220 lines
4.6 KiB
C++
220 lines
4.6 KiB
C++
#include "Vector2.hpp"
|
|
|
|
#include <cmath>
|
|
|
|
#include <gdnative/vector2.h>
|
|
|
|
#include "String.hpp"
|
|
|
|
namespace godot {
|
|
|
|
Vector2 Vector2::operator+(const Vector2 &p_v) const {
|
|
return Vector2(x + p_v.x, y + p_v.y);
|
|
}
|
|
|
|
void Vector2::operator+=(const Vector2 &p_v) {
|
|
x += p_v.x;
|
|
y += p_v.y;
|
|
}
|
|
|
|
Vector2 Vector2::operator-(const Vector2 &p_v) const {
|
|
return Vector2(x - p_v.x, y - p_v.y);
|
|
}
|
|
|
|
void Vector2::operator-=(const Vector2 &p_v) {
|
|
x -= p_v.x;
|
|
y -= p_v.y;
|
|
}
|
|
|
|
Vector2 Vector2::operator*(const Vector2 &p_v1) const {
|
|
return Vector2(x * p_v1.x, y * p_v1.y);
|
|
}
|
|
|
|
Vector2 Vector2::operator*(const real_t &rvalue) const {
|
|
return Vector2(x * rvalue, y * rvalue);
|
|
}
|
|
|
|
void Vector2::operator*=(const real_t &rvalue) {
|
|
x *= rvalue;
|
|
y *= rvalue;
|
|
}
|
|
|
|
Vector2 Vector2::operator/(const Vector2 &p_v1) const {
|
|
return Vector2(x / p_v1.x, y / p_v1.y);
|
|
}
|
|
|
|
Vector2 Vector2::operator/(const real_t &rvalue) const {
|
|
return Vector2(x / rvalue, y / rvalue);
|
|
}
|
|
|
|
void Vector2::operator/=(const real_t &rvalue) {
|
|
x /= rvalue;
|
|
y /= rvalue;
|
|
}
|
|
|
|
Vector2 Vector2::operator-() const {
|
|
return Vector2(-x, -y);
|
|
}
|
|
|
|
bool Vector2::operator==(const Vector2 &p_vec2) const {
|
|
return x == p_vec2.x && y == p_vec2.y;
|
|
}
|
|
|
|
bool Vector2::operator!=(const Vector2 &p_vec2) const {
|
|
return x != p_vec2.x || y != p_vec2.y;
|
|
}
|
|
|
|
void Vector2::normalize() {
|
|
real_t l = x * x + y * y;
|
|
if (l != 0) {
|
|
l = sqrt(l);
|
|
x /= l;
|
|
y /= l;
|
|
}
|
|
}
|
|
|
|
Vector2 Vector2::normalized() const {
|
|
Vector2 v = *this;
|
|
v.normalize();
|
|
return v;
|
|
}
|
|
|
|
real_t Vector2::length() const {
|
|
return sqrt(x * x + y * y);
|
|
}
|
|
real_t Vector2::length_squared() const {
|
|
return x * x + y * y;
|
|
}
|
|
|
|
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
|
|
return sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
|
|
}
|
|
|
|
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
|
|
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
|
|
}
|
|
|
|
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
|
|
return atan2(cross(p_vector2), dot(p_vector2));
|
|
}
|
|
|
|
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
|
|
return atan2(y - p_vector2.y, x - p_vector2.x);
|
|
}
|
|
|
|
real_t Vector2::dot(const Vector2 &p_other) const {
|
|
return x * p_other.x + y * p_other.y;
|
|
}
|
|
|
|
real_t Vector2::cross(const Vector2 &p_other) const {
|
|
return x * p_other.y - y * p_other.x;
|
|
}
|
|
|
|
Vector2 Vector2::cross(real_t p_other) const {
|
|
return Vector2(p_other * y, -p_other * x);
|
|
}
|
|
|
|
Vector2 Vector2::project(const Vector2 &p_vec) const {
|
|
Vector2 v1 = p_vec;
|
|
Vector2 v2 = *this;
|
|
return v2 * (v1.dot(v2) / v2.dot(v2));
|
|
}
|
|
|
|
Vector2 Vector2::plane_project(real_t p_d, const Vector2 &p_vec) const {
|
|
return p_vec - *this * (dot(p_vec) - p_d);
|
|
}
|
|
|
|
Vector2 Vector2::clamped(real_t p_len) const {
|
|
real_t l = length();
|
|
Vector2 v = *this;
|
|
if (l > 0 && p_len < l) {
|
|
v /= l;
|
|
v *= p_len;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
Vector2 Vector2::linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) {
|
|
Vector2 res = p_a;
|
|
res.x += (p_t * (p_b.x - p_a.x));
|
|
res.y += (p_t * (p_b.y - p_a.y));
|
|
return res;
|
|
}
|
|
|
|
Vector2 Vector2::linear_interpolate(const Vector2 &p_b, real_t p_t) const {
|
|
Vector2 res = *this;
|
|
res.x += (p_t * (p_b.x - x));
|
|
res.y += (p_t * (p_b.y - y));
|
|
return res;
|
|
}
|
|
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
|
|
Vector2 p0 = p_pre_a;
|
|
Vector2 p1 = *this;
|
|
Vector2 p2 = p_b;
|
|
Vector2 p3 = p_post_b;
|
|
|
|
real_t t = p_t;
|
|
real_t t2 = t * t;
|
|
real_t t3 = t2 * t;
|
|
|
|
Vector2 out;
|
|
out = ((p1 * 2.0) +
|
|
(-p0 + p2) * t +
|
|
(p0 * 2.0 - p1 * 5.0 + p2 * 4 - p3) * t2 +
|
|
(-p0 + p1 * 3.0 - p2 * 3.0 + p3) * t3) *
|
|
0.5;
|
|
|
|
return out;
|
|
}
|
|
|
|
Vector2 Vector2::slide(const Vector2 &p_vec) const {
|
|
return p_vec - *this * this->dot(p_vec);
|
|
}
|
|
|
|
Vector2 Vector2::reflect(const Vector2 &p_vec) const {
|
|
return p_vec - *this * this->dot(p_vec) * 2.0;
|
|
}
|
|
|
|
real_t Vector2::angle() const {
|
|
return atan2(y, x);
|
|
}
|
|
|
|
void Vector2::set_rotation(real_t p_radians) {
|
|
|
|
x = cosf(p_radians);
|
|
y = sinf(p_radians);
|
|
}
|
|
|
|
Vector2 Vector2::abs() const {
|
|
|
|
return Vector2(fabs(x), fabs(y));
|
|
}
|
|
|
|
Vector2 Vector2::rotated(real_t p_by) const {
|
|
Vector2 v;
|
|
v.set_rotation(angle() + p_by);
|
|
v *= length();
|
|
return v;
|
|
}
|
|
|
|
Vector2 Vector2::tangent() const {
|
|
|
|
return Vector2(y, -x);
|
|
}
|
|
|
|
Vector2 Vector2::floor() const {
|
|
return Vector2(::floor(x), ::floor(y));
|
|
}
|
|
|
|
Vector2 Vector2::snapped(const Vector2 &p_by) const {
|
|
return Vector2(
|
|
p_by.x != 0 ? ::floor(x / p_by.x + 0.5) * p_by.x : x,
|
|
p_by.y != 0 ? ::floor(y / p_by.y + 0.5) * p_by.y : y);
|
|
}
|
|
|
|
Vector2::operator String() const {
|
|
return String::num(x) + ", " + String::num(y);
|
|
}
|
|
|
|
} // namespace godot
|