mirror of
				https://git.code.sf.net/p/libpng/code.git
				synced 2025-07-10 18:04:09 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			2875 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2875 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
/* png.c - location for general purpose libpng functions
 | 
						|
 *
 | 
						|
 * Last changed in libpng 1.5.11 [June 14, 2012]
 | 
						|
 * Copyright (c) 1998-2012 Glenn Randers-Pehrson
 | 
						|
 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
 | 
						|
 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
 | 
						|
 *
 | 
						|
 * This code is released under the libpng license.
 | 
						|
 * For conditions of distribution and use, see the disclaimer
 | 
						|
 * and license in png.h
 | 
						|
 */
 | 
						|
 | 
						|
#include "pngpriv.h"
 | 
						|
 | 
						|
/* Generate a compiler error if there is an old png.h in the search path. */
 | 
						|
typedef png_libpng_version_1_5_13beta01 Your_png_h_is_not_version_1_5_13beta01;
 | 
						|
 | 
						|
/* Tells libpng that we have already handled the first "num_bytes" bytes
 | 
						|
 * of the PNG file signature.  If the PNG data is embedded into another
 | 
						|
 * stream we can set num_bytes = 8 so that libpng will not attempt to read
 | 
						|
 * or write any of the magic bytes before it starts on the IHDR.
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef PNG_READ_SUPPORTED
 | 
						|
void PNGAPI
 | 
						|
png_set_sig_bytes(png_structp png_ptr, int num_bytes)
 | 
						|
{
 | 
						|
   png_debug(1, "in png_set_sig_bytes");
 | 
						|
 | 
						|
   if (png_ptr == NULL)
 | 
						|
      return;
 | 
						|
 | 
						|
   if (num_bytes > 8)
 | 
						|
      png_error(png_ptr, "Too many bytes for PNG signature");
 | 
						|
 | 
						|
   png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
 | 
						|
}
 | 
						|
 | 
						|
/* Checks whether the supplied bytes match the PNG signature.  We allow
 | 
						|
 * checking less than the full 8-byte signature so that those apps that
 | 
						|
 * already read the first few bytes of a file to determine the file type
 | 
						|
 * can simply check the remaining bytes for extra assurance.  Returns
 | 
						|
 * an integer less than, equal to, or greater than zero if sig is found,
 | 
						|
 * respectively, to be less than, to match, or be greater than the correct
 | 
						|
 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
 | 
						|
 */
 | 
						|
int PNGAPI
 | 
						|
png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
 | 
						|
{
 | 
						|
   png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
 | 
						|
 | 
						|
   if (num_to_check > 8)
 | 
						|
      num_to_check = 8;
 | 
						|
 | 
						|
   else if (num_to_check < 1)
 | 
						|
      return (-1);
 | 
						|
 | 
						|
   if (start > 7)
 | 
						|
      return (-1);
 | 
						|
 | 
						|
   if (start + num_to_check > 8)
 | 
						|
      num_to_check = 8 - start;
 | 
						|
 | 
						|
   return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check)));
 | 
						|
}
 | 
						|
 | 
						|
#endif /* PNG_READ_SUPPORTED */
 | 
						|
 | 
						|
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 | 
						|
/* Function to allocate memory for zlib */
 | 
						|
PNG_FUNCTION(voidpf /* PRIVATE */,
 | 
						|
png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
 | 
						|
{
 | 
						|
   png_voidp ptr;
 | 
						|
   png_structp p=(png_structp)png_ptr;
 | 
						|
   png_uint_32 save_flags=p->flags;
 | 
						|
   png_alloc_size_t num_bytes;
 | 
						|
 | 
						|
   if (png_ptr == NULL)
 | 
						|
      return (NULL);
 | 
						|
 | 
						|
   if (items > PNG_UINT_32_MAX/size)
 | 
						|
   {
 | 
						|
     png_warning (p, "Potential overflow in png_zalloc()");
 | 
						|
     return (NULL);
 | 
						|
   }
 | 
						|
   num_bytes = (png_alloc_size_t)items * size;
 | 
						|
 | 
						|
   p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
 | 
						|
   ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes);
 | 
						|
   p->flags=save_flags;
 | 
						|
 | 
						|
   return ((voidpf)ptr);
 | 
						|
}
 | 
						|
 | 
						|
/* Function to free memory for zlib */
 | 
						|
void /* PRIVATE */
 | 
						|
png_zfree(voidpf png_ptr, voidpf ptr)
 | 
						|
{
 | 
						|
   png_free((png_structp)png_ptr, (png_voidp)ptr);
 | 
						|
}
 | 
						|
 | 
						|
/* Reset the CRC variable to 32 bits of 1's.  Care must be taken
 | 
						|
 * in case CRC is > 32 bits to leave the top bits 0.
 | 
						|
 */
 | 
						|
void /* PRIVATE */
 | 
						|
png_reset_crc(png_structp png_ptr)
 | 
						|
{
 | 
						|
   /* The cast is safe because the crc is a 32 bit value. */
 | 
						|
   png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate the CRC over a section of data.  We can only pass as
 | 
						|
 * much data to this routine as the largest single buffer size.  We
 | 
						|
 * also check that this data will actually be used before going to the
 | 
						|
 * trouble of calculating it.
 | 
						|
 */
 | 
						|
void /* PRIVATE */
 | 
						|
png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length)
 | 
						|
{
 | 
						|
   int need_crc = 1;
 | 
						|
 | 
						|
   if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name))
 | 
						|
   {
 | 
						|
      if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
 | 
						|
          (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
 | 
						|
         need_crc = 0;
 | 
						|
   }
 | 
						|
 | 
						|
   else /* critical */
 | 
						|
   {
 | 
						|
      if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
 | 
						|
         need_crc = 0;
 | 
						|
   }
 | 
						|
 | 
						|
   /* 'uLong' is defined as unsigned long, this means that on some systems it is
 | 
						|
    * a 64 bit value.  crc32, however, returns 32 bits so the following cast is
 | 
						|
    * safe.  'uInt' may be no more than 16 bits, so it is necessary to perform a
 | 
						|
    * loop here.
 | 
						|
    */
 | 
						|
   if (need_crc && length > 0)
 | 
						|
   {
 | 
						|
      uLong crc = png_ptr->crc; /* Should never issue a warning */
 | 
						|
 | 
						|
      do
 | 
						|
      {
 | 
						|
         uInt safeLength = (uInt)length;
 | 
						|
         if (safeLength == 0)
 | 
						|
            safeLength = (uInt)-1; /* evil, but safe */
 | 
						|
 | 
						|
         crc = crc32(crc, ptr, safeLength);
 | 
						|
 | 
						|
         /* The following should never issue compiler warnings, if they do the
 | 
						|
          * target system has characteristics that will probably violate other
 | 
						|
          * assumptions within the libpng code.
 | 
						|
          */
 | 
						|
         ptr += safeLength;
 | 
						|
         length -= safeLength;
 | 
						|
      }
 | 
						|
      while (length > 0);
 | 
						|
 | 
						|
      /* And the following is always safe because the crc is only 32 bits. */
 | 
						|
      png_ptr->crc = (png_uint_32)crc;
 | 
						|
   }
 | 
						|
}
 | 
						|
 | 
						|
/* Check a user supplied version number, called from both read and write
 | 
						|
 * functions that create a png_struct
 | 
						|
 */
 | 
						|
int
 | 
						|
png_user_version_check(png_structp png_ptr, png_const_charp user_png_ver)
 | 
						|
{
 | 
						|
   if (user_png_ver)
 | 
						|
   {
 | 
						|
      int i = 0;
 | 
						|
 | 
						|
      do
 | 
						|
      {
 | 
						|
         if (user_png_ver[i] != png_libpng_ver[i])
 | 
						|
            png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
 | 
						|
      } while (png_libpng_ver[i++]);
 | 
						|
   }
 | 
						|
 | 
						|
   else
 | 
						|
      png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
 | 
						|
 | 
						|
   if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
 | 
						|
   {
 | 
						|
     /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
 | 
						|
      * we must recompile any applications that use any older library version.
 | 
						|
      * For versions after libpng 1.0, we will be compatible, so we need
 | 
						|
      * only check the first digit.
 | 
						|
      */
 | 
						|
      if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
 | 
						|
          (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
 | 
						|
          (user_png_ver[0] == '0' && user_png_ver[2] < '9'))
 | 
						|
      {
 | 
						|
#ifdef PNG_WARNINGS_SUPPORTED
 | 
						|
         size_t pos = 0;
 | 
						|
         char m[128];
 | 
						|
 | 
						|
         pos = png_safecat(m, sizeof m, pos, "Application built with libpng-");
 | 
						|
         pos = png_safecat(m, sizeof m, pos, user_png_ver);
 | 
						|
         pos = png_safecat(m, sizeof m, pos, " but running with ");
 | 
						|
         pos = png_safecat(m, sizeof m, pos, png_libpng_ver);
 | 
						|
 | 
						|
         png_warning(png_ptr, m);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
 | 
						|
         png_ptr->flags = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
         return 0;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   /* Success return. */
 | 
						|
   return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate the memory for an info_struct for the application.  We don't
 | 
						|
 * really need the png_ptr, but it could potentially be useful in the
 | 
						|
 * future.  This should be used in favour of malloc(png_sizeof(png_info))
 | 
						|
 * and png_info_init() so that applications that want to use a shared
 | 
						|
 * libpng don't have to be recompiled if png_info changes size.
 | 
						|
 */
 | 
						|
PNG_FUNCTION(png_infop,PNGAPI
 | 
						|
png_create_info_struct,(png_structp png_ptr),PNG_ALLOCATED)
 | 
						|
{
 | 
						|
   png_infop info_ptr;
 | 
						|
 | 
						|
   png_debug(1, "in png_create_info_struct");
 | 
						|
 | 
						|
   if (png_ptr == NULL)
 | 
						|
      return (NULL);
 | 
						|
 | 
						|
#ifdef PNG_USER_MEM_SUPPORTED
 | 
						|
   info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO,
 | 
						|
      png_ptr->malloc_fn, png_ptr->mem_ptr);
 | 
						|
#else
 | 
						|
   info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
 | 
						|
#endif
 | 
						|
   if (info_ptr != NULL)
 | 
						|
      png_info_init_3(&info_ptr, png_sizeof(png_info));
 | 
						|
 | 
						|
   return (info_ptr);
 | 
						|
}
 | 
						|
 | 
						|
/* This function frees the memory associated with a single info struct.
 | 
						|
 * Normally, one would use either png_destroy_read_struct() or
 | 
						|
 * png_destroy_write_struct() to free an info struct, but this may be
 | 
						|
 * useful for some applications.
 | 
						|
 */
 | 
						|
void PNGAPI
 | 
						|
png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr)
 | 
						|
{
 | 
						|
   png_infop info_ptr = NULL;
 | 
						|
 | 
						|
   png_debug(1, "in png_destroy_info_struct");
 | 
						|
 | 
						|
   if (png_ptr == NULL)
 | 
						|
      return;
 | 
						|
 | 
						|
   if (info_ptr_ptr != NULL)
 | 
						|
      info_ptr = *info_ptr_ptr;
 | 
						|
 | 
						|
   if (info_ptr != NULL)
 | 
						|
   {
 | 
						|
      png_info_destroy(png_ptr, info_ptr);
 | 
						|
 | 
						|
#ifdef PNG_USER_MEM_SUPPORTED
 | 
						|
      png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn,
 | 
						|
          png_ptr->mem_ptr);
 | 
						|
#else
 | 
						|
      png_destroy_struct((png_voidp)info_ptr);
 | 
						|
#endif
 | 
						|
      *info_ptr_ptr = NULL;
 | 
						|
   }
 | 
						|
}
 | 
						|
 | 
						|
/* Initialize the info structure.  This is now an internal function (0.89)
 | 
						|
 * and applications using it are urged to use png_create_info_struct()
 | 
						|
 * instead.
 | 
						|
 */
 | 
						|
 | 
						|
void PNGAPI
 | 
						|
png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size)
 | 
						|
{
 | 
						|
   png_infop info_ptr = *ptr_ptr;
 | 
						|
 | 
						|
   png_debug(1, "in png_info_init_3");
 | 
						|
 | 
						|
   if (info_ptr == NULL)
 | 
						|
      return;
 | 
						|
 | 
						|
   if (png_sizeof(png_info) > png_info_struct_size)
 | 
						|
   {
 | 
						|
      png_destroy_struct(info_ptr);
 | 
						|
      info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
 | 
						|
      *ptr_ptr = info_ptr;
 | 
						|
   }
 | 
						|
 | 
						|
   /* Set everything to 0 */
 | 
						|
   png_memset(info_ptr, 0, png_sizeof(png_info));
 | 
						|
}
 | 
						|
 | 
						|
void PNGAPI
 | 
						|
png_data_freer(png_structp png_ptr, png_infop info_ptr,
 | 
						|
   int freer, png_uint_32 mask)
 | 
						|
{
 | 
						|
   png_debug(1, "in png_data_freer");
 | 
						|
 | 
						|
   if (png_ptr == NULL || info_ptr == NULL)
 | 
						|
      return;
 | 
						|
 | 
						|
   if (freer == PNG_DESTROY_WILL_FREE_DATA)
 | 
						|
      info_ptr->free_me |= mask;
 | 
						|
 | 
						|
   else if (freer == PNG_USER_WILL_FREE_DATA)
 | 
						|
      info_ptr->free_me &= ~mask;
 | 
						|
 | 
						|
   else
 | 
						|
      png_warning(png_ptr,
 | 
						|
         "Unknown freer parameter in png_data_freer");
 | 
						|
}
 | 
						|
 | 
						|
void PNGAPI
 | 
						|
png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask,
 | 
						|
   int num)
 | 
						|
{
 | 
						|
   png_debug(1, "in png_free_data");
 | 
						|
 | 
						|
   if (png_ptr == NULL || info_ptr == NULL)
 | 
						|
      return;
 | 
						|
 | 
						|
#ifdef PNG_TEXT_SUPPORTED
 | 
						|
   /* Free text item num or (if num == -1) all text items */
 | 
						|
   if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
 | 
						|
   {
 | 
						|
      if (num != -1)
 | 
						|
      {
 | 
						|
         if (info_ptr->text && info_ptr->text[num].key)
 | 
						|
         {
 | 
						|
            png_free(png_ptr, info_ptr->text[num].key);
 | 
						|
            info_ptr->text[num].key = NULL;
 | 
						|
         }
 | 
						|
      }
 | 
						|
 | 
						|
      else
 | 
						|
      {
 | 
						|
         int i;
 | 
						|
         for (i = 0; i < info_ptr->num_text; i++)
 | 
						|
             png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
 | 
						|
         png_free(png_ptr, info_ptr->text);
 | 
						|
         info_ptr->text = NULL;
 | 
						|
         info_ptr->num_text=0;
 | 
						|
      }
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef PNG_tRNS_SUPPORTED
 | 
						|
   /* Free any tRNS entry */
 | 
						|
   if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
 | 
						|
   {
 | 
						|
      png_free(png_ptr, info_ptr->trans_alpha);
 | 
						|
      info_ptr->trans_alpha = NULL;
 | 
						|
      info_ptr->valid &= ~PNG_INFO_tRNS;
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef PNG_sCAL_SUPPORTED
 | 
						|
   /* Free any sCAL entry */
 | 
						|
   if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
 | 
						|
   {
 | 
						|
      png_free(png_ptr, info_ptr->scal_s_width);
 | 
						|
      png_free(png_ptr, info_ptr->scal_s_height);
 | 
						|
      info_ptr->scal_s_width = NULL;
 | 
						|
      info_ptr->scal_s_height = NULL;
 | 
						|
      info_ptr->valid &= ~PNG_INFO_sCAL;
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef PNG_pCAL_SUPPORTED
 | 
						|
   /* Free any pCAL entry */
 | 
						|
   if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
 | 
						|
   {
 | 
						|
      png_free(png_ptr, info_ptr->pcal_purpose);
 | 
						|
      png_free(png_ptr, info_ptr->pcal_units);
 | 
						|
      info_ptr->pcal_purpose = NULL;
 | 
						|
      info_ptr->pcal_units = NULL;
 | 
						|
      if (info_ptr->pcal_params != NULL)
 | 
						|
         {
 | 
						|
            int i;
 | 
						|
            for (i = 0; i < (int)info_ptr->pcal_nparams; i++)
 | 
						|
            {
 | 
						|
               png_free(png_ptr, info_ptr->pcal_params[i]);
 | 
						|
               info_ptr->pcal_params[i] = NULL;
 | 
						|
            }
 | 
						|
            png_free(png_ptr, info_ptr->pcal_params);
 | 
						|
            info_ptr->pcal_params = NULL;
 | 
						|
         }
 | 
						|
      info_ptr->valid &= ~PNG_INFO_pCAL;
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef PNG_iCCP_SUPPORTED
 | 
						|
   /* Free any iCCP entry */
 | 
						|
   if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
 | 
						|
   {
 | 
						|
      png_free(png_ptr, info_ptr->iccp_name);
 | 
						|
      png_free(png_ptr, info_ptr->iccp_profile);
 | 
						|
      info_ptr->iccp_name = NULL;
 | 
						|
      info_ptr->iccp_profile = NULL;
 | 
						|
      info_ptr->valid &= ~PNG_INFO_iCCP;
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef PNG_sPLT_SUPPORTED
 | 
						|
   /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
 | 
						|
   if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
 | 
						|
   {
 | 
						|
      if (num != -1)
 | 
						|
      {
 | 
						|
         if (info_ptr->splt_palettes)
 | 
						|
         {
 | 
						|
            png_free(png_ptr, info_ptr->splt_palettes[num].name);
 | 
						|
            png_free(png_ptr, info_ptr->splt_palettes[num].entries);
 | 
						|
            info_ptr->splt_palettes[num].name = NULL;
 | 
						|
            info_ptr->splt_palettes[num].entries = NULL;
 | 
						|
         }
 | 
						|
      }
 | 
						|
 | 
						|
      else
 | 
						|
      {
 | 
						|
         if (info_ptr->splt_palettes_num)
 | 
						|
         {
 | 
						|
            int i;
 | 
						|
            for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
 | 
						|
               png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i);
 | 
						|
 | 
						|
            png_free(png_ptr, info_ptr->splt_palettes);
 | 
						|
            info_ptr->splt_palettes = NULL;
 | 
						|
            info_ptr->splt_palettes_num = 0;
 | 
						|
         }
 | 
						|
         info_ptr->valid &= ~PNG_INFO_sPLT;
 | 
						|
      }
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
 | 
						|
   if (png_ptr->unknown_chunk.data)
 | 
						|
   {
 | 
						|
      png_free(png_ptr, png_ptr->unknown_chunk.data);
 | 
						|
      png_ptr->unknown_chunk.data = NULL;
 | 
						|
   }
 | 
						|
 | 
						|
   if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
 | 
						|
   {
 | 
						|
      if (num != -1)
 | 
						|
      {
 | 
						|
          if (info_ptr->unknown_chunks)
 | 
						|
          {
 | 
						|
             png_free(png_ptr, info_ptr->unknown_chunks[num].data);
 | 
						|
             info_ptr->unknown_chunks[num].data = NULL;
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
      else
 | 
						|
      {
 | 
						|
         int i;
 | 
						|
 | 
						|
         if (info_ptr->unknown_chunks_num)
 | 
						|
         {
 | 
						|
            for (i = 0; i < info_ptr->unknown_chunks_num; i++)
 | 
						|
               png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i);
 | 
						|
 | 
						|
            png_free(png_ptr, info_ptr->unknown_chunks);
 | 
						|
            info_ptr->unknown_chunks = NULL;
 | 
						|
            info_ptr->unknown_chunks_num = 0;
 | 
						|
         }
 | 
						|
      }
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef PNG_hIST_SUPPORTED
 | 
						|
   /* Free any hIST entry */
 | 
						|
   if ((mask & PNG_FREE_HIST)  & info_ptr->free_me)
 | 
						|
   {
 | 
						|
      png_free(png_ptr, info_ptr->hist);
 | 
						|
      info_ptr->hist = NULL;
 | 
						|
      info_ptr->valid &= ~PNG_INFO_hIST;
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
   /* Free any PLTE entry that was internally allocated */
 | 
						|
   if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
 | 
						|
   {
 | 
						|
      png_zfree(png_ptr, info_ptr->palette);
 | 
						|
      info_ptr->palette = NULL;
 | 
						|
      info_ptr->valid &= ~PNG_INFO_PLTE;
 | 
						|
      info_ptr->num_palette = 0;
 | 
						|
   }
 | 
						|
 | 
						|
#ifdef PNG_INFO_IMAGE_SUPPORTED
 | 
						|
   /* Free any image bits attached to the info structure */
 | 
						|
   if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
 | 
						|
   {
 | 
						|
      if (info_ptr->row_pointers)
 | 
						|
      {
 | 
						|
         int row;
 | 
						|
         for (row = 0; row < (int)info_ptr->height; row++)
 | 
						|
         {
 | 
						|
            png_free(png_ptr, info_ptr->row_pointers[row]);
 | 
						|
            info_ptr->row_pointers[row] = NULL;
 | 
						|
         }
 | 
						|
         png_free(png_ptr, info_ptr->row_pointers);
 | 
						|
         info_ptr->row_pointers = NULL;
 | 
						|
      }
 | 
						|
      info_ptr->valid &= ~PNG_INFO_IDAT;
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
   if (num != -1)
 | 
						|
      mask &= ~PNG_FREE_MUL;
 | 
						|
 | 
						|
   info_ptr->free_me &= ~mask;
 | 
						|
}
 | 
						|
 | 
						|
/* This is an internal routine to free any memory that the info struct is
 | 
						|
 * pointing to before re-using it or freeing the struct itself.  Recall
 | 
						|
 * that png_free() checks for NULL pointers for us.
 | 
						|
 */
 | 
						|
void /* PRIVATE */
 | 
						|
png_info_destroy(png_structp png_ptr, png_infop info_ptr)
 | 
						|
{
 | 
						|
   png_debug(1, "in png_info_destroy");
 | 
						|
 | 
						|
   png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
 | 
						|
 | 
						|
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
 | 
						|
   if (png_ptr->num_chunk_list)
 | 
						|
   {
 | 
						|
      png_free(png_ptr, png_ptr->chunk_list);
 | 
						|
      png_ptr->chunk_list = NULL;
 | 
						|
      png_ptr->num_chunk_list = 0;
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
   png_info_init_3(&info_ptr, png_sizeof(png_info));
 | 
						|
}
 | 
						|
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 | 
						|
 | 
						|
/* This function returns a pointer to the io_ptr associated with the user
 | 
						|
 * functions.  The application should free any memory associated with this
 | 
						|
 * pointer before png_write_destroy() or png_read_destroy() are called.
 | 
						|
 */
 | 
						|
png_voidp PNGAPI
 | 
						|
png_get_io_ptr(png_structp png_ptr)
 | 
						|
{
 | 
						|
   if (png_ptr == NULL)
 | 
						|
      return (NULL);
 | 
						|
 | 
						|
   return (png_ptr->io_ptr);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 | 
						|
#  ifdef PNG_STDIO_SUPPORTED
 | 
						|
/* Initialize the default input/output functions for the PNG file.  If you
 | 
						|
 * use your own read or write routines, you can call either png_set_read_fn()
 | 
						|
 * or png_set_write_fn() instead of png_init_io().  If you have defined
 | 
						|
 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
 | 
						|
 * function of your own because "FILE *" isn't necessarily available.
 | 
						|
 */
 | 
						|
void PNGAPI
 | 
						|
png_init_io(png_structp png_ptr, png_FILE_p fp)
 | 
						|
{
 | 
						|
   png_debug(1, "in png_init_io");
 | 
						|
 | 
						|
   if (png_ptr == NULL)
 | 
						|
      return;
 | 
						|
 | 
						|
   png_ptr->io_ptr = (png_voidp)fp;
 | 
						|
}
 | 
						|
#  endif
 | 
						|
 | 
						|
#  ifdef PNG_TIME_RFC1123_SUPPORTED
 | 
						|
/* Convert the supplied time into an RFC 1123 string suitable for use in
 | 
						|
 * a "Creation Time" or other text-based time string.
 | 
						|
 */
 | 
						|
png_const_charp PNGAPI
 | 
						|
png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime)
 | 
						|
{
 | 
						|
   static PNG_CONST char short_months[12][4] =
 | 
						|
        {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
 | 
						|
         "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
 | 
						|
 | 
						|
   if (png_ptr == NULL)
 | 
						|
      return (NULL);
 | 
						|
 | 
						|
   if (ptime->year > 9999 /* RFC1123 limitation */ ||
 | 
						|
       ptime->month == 0    ||  ptime->month > 12  ||
 | 
						|
       ptime->day   == 0    ||  ptime->day   > 31  ||
 | 
						|
       ptime->hour  > 23    ||  ptime->minute > 59 ||
 | 
						|
       ptime->second > 60)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Ignoring invalid time value");
 | 
						|
      return (NULL);
 | 
						|
   }
 | 
						|
 | 
						|
   {
 | 
						|
      size_t pos = 0;
 | 
						|
      char number_buf[5]; /* enough for a four-digit year */
 | 
						|
 | 
						|
#     define APPEND_STRING(string)\
 | 
						|
         pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\
 | 
						|
            pos, (string))
 | 
						|
#     define APPEND_NUMBER(format, value)\
 | 
						|
         APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
 | 
						|
#     define APPEND(ch)\
 | 
						|
         if (pos < (sizeof png_ptr->time_buffer)-1)\
 | 
						|
            png_ptr->time_buffer[pos++] = (ch)
 | 
						|
 | 
						|
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
 | 
						|
      APPEND(' ');
 | 
						|
      APPEND_STRING(short_months[(ptime->month - 1)]);
 | 
						|
      APPEND(' ');
 | 
						|
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
 | 
						|
      APPEND(' ');
 | 
						|
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
 | 
						|
      APPEND(':');
 | 
						|
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
 | 
						|
      APPEND(':');
 | 
						|
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
 | 
						|
      APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
 | 
						|
 | 
						|
#     undef APPEND
 | 
						|
#     undef APPEND_NUMBER
 | 
						|
#     undef APPEND_STRING
 | 
						|
   }
 | 
						|
 | 
						|
   return png_ptr->time_buffer;
 | 
						|
}
 | 
						|
#  endif /* PNG_TIME_RFC1123_SUPPORTED */
 | 
						|
 | 
						|
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 | 
						|
 | 
						|
png_const_charp PNGAPI
 | 
						|
png_get_copyright(png_const_structp png_ptr)
 | 
						|
{
 | 
						|
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
 | 
						|
#ifdef PNG_STRING_COPYRIGHT
 | 
						|
   return PNG_STRING_COPYRIGHT
 | 
						|
#else
 | 
						|
#  ifdef __STDC__
 | 
						|
   return PNG_STRING_NEWLINE \
 | 
						|
     "libpng version 1.5.13beta01 - July 14, 2012" PNG_STRING_NEWLINE \
 | 
						|
     "Copyright (c) 1998-2012 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
 | 
						|
     "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
 | 
						|
     "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
 | 
						|
     PNG_STRING_NEWLINE;
 | 
						|
#  else
 | 
						|
      return "libpng version 1.5.13beta01 - July 14, 2012\
 | 
						|
      Copyright (c) 1998-2012 Glenn Randers-Pehrson\
 | 
						|
      Copyright (c) 1996-1997 Andreas Dilger\
 | 
						|
      Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
 | 
						|
#  endif
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* The following return the library version as a short string in the
 | 
						|
 * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
 | 
						|
 * used with your application, print out PNG_LIBPNG_VER_STRING, which
 | 
						|
 * is defined in png.h.
 | 
						|
 * Note: now there is no difference between png_get_libpng_ver() and
 | 
						|
 * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
 | 
						|
 * it is guaranteed that png.c uses the correct version of png.h.
 | 
						|
 */
 | 
						|
png_const_charp PNGAPI
 | 
						|
png_get_libpng_ver(png_const_structp png_ptr)
 | 
						|
{
 | 
						|
   /* Version of *.c files used when building libpng */
 | 
						|
   return png_get_header_ver(png_ptr);
 | 
						|
}
 | 
						|
 | 
						|
png_const_charp PNGAPI
 | 
						|
png_get_header_ver(png_const_structp png_ptr)
 | 
						|
{
 | 
						|
   /* Version of *.h files used when building libpng */
 | 
						|
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
 | 
						|
   return PNG_LIBPNG_VER_STRING;
 | 
						|
}
 | 
						|
 | 
						|
png_const_charp PNGAPI
 | 
						|
png_get_header_version(png_const_structp png_ptr)
 | 
						|
{
 | 
						|
   /* Returns longer string containing both version and date */
 | 
						|
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
 | 
						|
#ifdef __STDC__
 | 
						|
   return PNG_HEADER_VERSION_STRING
 | 
						|
#  ifndef PNG_READ_SUPPORTED
 | 
						|
   "     (NO READ SUPPORT)"
 | 
						|
#  endif
 | 
						|
   PNG_STRING_NEWLINE;
 | 
						|
#else
 | 
						|
   return PNG_HEADER_VERSION_STRING;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
 | 
						|
int PNGAPI
 | 
						|
png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name)
 | 
						|
{
 | 
						|
   /* Check chunk_name and return "keep" value if it's on the list, else 0 */
 | 
						|
   png_const_bytep p, p_end;
 | 
						|
 | 
						|
   if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list <= 0)
 | 
						|
      return PNG_HANDLE_CHUNK_AS_DEFAULT;
 | 
						|
 | 
						|
   p_end = png_ptr->chunk_list;
 | 
						|
   p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
 | 
						|
 | 
						|
   /* The code is the fifth byte after each four byte string.  Historically this
 | 
						|
    * code was always searched from the end of the list, so it should continue
 | 
						|
    * to do so in case there are duplicated entries.
 | 
						|
    */
 | 
						|
   do /* num_chunk_list > 0, so at least one */
 | 
						|
   {
 | 
						|
      p -= 5;
 | 
						|
      if (!png_memcmp(chunk_name, p, 4))
 | 
						|
         return p[4];
 | 
						|
   }
 | 
						|
   while (p > p_end);
 | 
						|
 | 
						|
   return PNG_HANDLE_CHUNK_AS_DEFAULT;
 | 
						|
}
 | 
						|
 | 
						|
int /* PRIVATE */
 | 
						|
png_chunk_unknown_handling(png_structp png_ptr, png_uint_32 chunk_name)
 | 
						|
{
 | 
						|
   png_byte chunk_string[5];
 | 
						|
 | 
						|
   PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
 | 
						|
   return png_handle_as_unknown(png_ptr, chunk_string);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef PNG_READ_SUPPORTED
 | 
						|
/* This function, added to libpng-1.0.6g, is untested. */
 | 
						|
int PNGAPI
 | 
						|
png_reset_zstream(png_structp png_ptr)
 | 
						|
{
 | 
						|
   if (png_ptr == NULL)
 | 
						|
      return Z_STREAM_ERROR;
 | 
						|
 | 
						|
   return (inflateReset(&png_ptr->zstream));
 | 
						|
}
 | 
						|
#endif /* PNG_READ_SUPPORTED */
 | 
						|
 | 
						|
/* This function was added to libpng-1.0.7 */
 | 
						|
png_uint_32 PNGAPI
 | 
						|
png_access_version_number(void)
 | 
						|
{
 | 
						|
   /* Version of *.c files used when building libpng */
 | 
						|
   return((png_uint_32)PNG_LIBPNG_VER);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 | 
						|
/* png_convert_size: a PNGAPI but no longer in png.h, so deleted
 | 
						|
 * at libpng 1.5.5!
 | 
						|
 */
 | 
						|
 | 
						|
/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
 | 
						|
#  ifdef PNG_CHECK_cHRM_SUPPORTED
 | 
						|
 | 
						|
int /* PRIVATE */
 | 
						|
png_check_cHRM_fixed(png_structp png_ptr,
 | 
						|
   png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x,
 | 
						|
   png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y,
 | 
						|
   png_fixed_point blue_x, png_fixed_point blue_y)
 | 
						|
{
 | 
						|
   int ret = 1;
 | 
						|
   unsigned long xy_hi,xy_lo,yx_hi,yx_lo;
 | 
						|
 | 
						|
   png_debug(1, "in function png_check_cHRM_fixed");
 | 
						|
 | 
						|
   if (png_ptr == NULL)
 | 
						|
      return 0;
 | 
						|
 | 
						|
   /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white
 | 
						|
    * y must also be greater than 0.  To test for the upper limit calculate
 | 
						|
    * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression
 | 
						|
    * cannot overflow.)  At this point we know x and y are >= 0 and (x+y) is
 | 
						|
    * <= PNG_FP_1.  The previous test on PNG_MAX_UINT_31 is removed because it
 | 
						|
    * pointless (and it produces compiler warnings!)
 | 
						|
    */
 | 
						|
   if (white_x < 0 || white_y <= 0 ||
 | 
						|
         red_x < 0 ||   red_y <  0 ||
 | 
						|
       green_x < 0 || green_y <  0 ||
 | 
						|
        blue_x < 0 ||  blue_y <  0)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr,
 | 
						|
        "Ignoring attempt to set negative chromaticity value");
 | 
						|
      ret = 0;
 | 
						|
   }
 | 
						|
   /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */
 | 
						|
   if (white_x > PNG_FP_1 - white_y)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Invalid cHRM white point");
 | 
						|
      ret = 0;
 | 
						|
   }
 | 
						|
 | 
						|
   if (red_x > PNG_FP_1 - red_y)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Invalid cHRM red point");
 | 
						|
      ret = 0;
 | 
						|
   }
 | 
						|
 | 
						|
   if (green_x > PNG_FP_1 - green_y)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Invalid cHRM green point");
 | 
						|
      ret = 0;
 | 
						|
   }
 | 
						|
 | 
						|
   if (blue_x > PNG_FP_1 - blue_y)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Invalid cHRM blue point");
 | 
						|
      ret = 0;
 | 
						|
   }
 | 
						|
 | 
						|
   png_64bit_product(green_x - red_x, blue_y - red_y, &xy_hi, &xy_lo);
 | 
						|
   png_64bit_product(green_y - red_y, blue_x - red_x, &yx_hi, &yx_lo);
 | 
						|
 | 
						|
   if (xy_hi == yx_hi && xy_lo == yx_lo)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr,
 | 
						|
         "Ignoring attempt to set cHRM RGB triangle with zero area");
 | 
						|
      ret = 0;
 | 
						|
   }
 | 
						|
 | 
						|
   return ret;
 | 
						|
}
 | 
						|
#  endif /* PNG_CHECK_cHRM_SUPPORTED */
 | 
						|
 | 
						|
#ifdef PNG_cHRM_SUPPORTED
 | 
						|
/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
 | 
						|
 * cHRM, as opposed to using chromaticities.  These internal APIs return
 | 
						|
 * non-zero on a parameter error.  The X, Y and Z values are required to be
 | 
						|
 * positive and less than 1.0.
 | 
						|
 */
 | 
						|
int png_xy_from_XYZ(png_xy *xy, png_XYZ XYZ)
 | 
						|
{
 | 
						|
   png_int_32 d, dwhite, whiteX, whiteY;
 | 
						|
 | 
						|
   d = XYZ.redX + XYZ.redY + XYZ.redZ;
 | 
						|
   if (!png_muldiv(&xy->redx, XYZ.redX, PNG_FP_1, d)) return 1;
 | 
						|
   if (!png_muldiv(&xy->redy, XYZ.redY, PNG_FP_1, d)) return 1;
 | 
						|
   dwhite = d;
 | 
						|
   whiteX = XYZ.redX;
 | 
						|
   whiteY = XYZ.redY;
 | 
						|
 | 
						|
   d = XYZ.greenX + XYZ.greenY + XYZ.greenZ;
 | 
						|
   if (!png_muldiv(&xy->greenx, XYZ.greenX, PNG_FP_1, d)) return 1;
 | 
						|
   if (!png_muldiv(&xy->greeny, XYZ.greenY, PNG_FP_1, d)) return 1;
 | 
						|
   dwhite += d;
 | 
						|
   whiteX += XYZ.greenX;
 | 
						|
   whiteY += XYZ.greenY;
 | 
						|
 | 
						|
   d = XYZ.blueX + XYZ.blueY + XYZ.blueZ;
 | 
						|
   if (!png_muldiv(&xy->bluex, XYZ.blueX, PNG_FP_1, d)) return 1;
 | 
						|
   if (!png_muldiv(&xy->bluey, XYZ.blueY, PNG_FP_1, d)) return 1;
 | 
						|
   dwhite += d;
 | 
						|
   whiteX += XYZ.blueX;
 | 
						|
   whiteY += XYZ.blueY;
 | 
						|
 | 
						|
   /* The reference white is simply the same of the end-point (X,Y,Z) vectors,
 | 
						|
    * thus:
 | 
						|
    */
 | 
						|
   if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1;
 | 
						|
   if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1;
 | 
						|
 | 
						|
   return 0;
 | 
						|
}
 | 
						|
 | 
						|
int png_XYZ_from_xy(png_XYZ *XYZ, png_xy xy)
 | 
						|
{
 | 
						|
   png_fixed_point red_inverse, green_inverse, blue_scale;
 | 
						|
   png_fixed_point left, right, denominator;
 | 
						|
 | 
						|
   /* Check xy and, implicitly, z.  Note that wide gamut color spaces typically
 | 
						|
    * have end points with 0 tristimulus values (these are impossible end
 | 
						|
    * points, but they are used to cover the possible colors.)
 | 
						|
    */
 | 
						|
   if (xy.redx < 0 || xy.redx > PNG_FP_1) return 1;
 | 
						|
   if (xy.redy < 0 || xy.redy > PNG_FP_1-xy.redx) return 1;
 | 
						|
   if (xy.greenx < 0 || xy.greenx > PNG_FP_1) return 1;
 | 
						|
   if (xy.greeny < 0 || xy.greeny > PNG_FP_1-xy.greenx) return 1;
 | 
						|
   if (xy.bluex < 0 || xy.bluex > PNG_FP_1) return 1;
 | 
						|
   if (xy.bluey < 0 || xy.bluey > PNG_FP_1-xy.bluex) return 1;
 | 
						|
   if (xy.whitex < 0 || xy.whitex > PNG_FP_1) return 1;
 | 
						|
   if (xy.whitey < 0 || xy.whitey > PNG_FP_1-xy.whitex) return 1;
 | 
						|
 | 
						|
   /* The reverse calculation is more difficult because the original tristimulus
 | 
						|
    * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
 | 
						|
    * derived values were recorded in the cHRM chunk;
 | 
						|
    * (red,green,blue,white)x(x,y).  This loses one degree of freedom and
 | 
						|
    * therefore an arbitrary ninth value has to be introduced to undo the
 | 
						|
    * original transformations.
 | 
						|
    *
 | 
						|
    * Think of the original end-points as points in (X,Y,Z) space.  The
 | 
						|
    * chromaticity values (c) have the property:
 | 
						|
    *
 | 
						|
    *           C
 | 
						|
    *   c = ---------
 | 
						|
    *       X + Y + Z
 | 
						|
    *
 | 
						|
    * For each c (x,y,z) from the corresponding original C (X,Y,Z).  Thus the
 | 
						|
    * three chromaticity values (x,y,z) for each end-point obey the
 | 
						|
    * relationship:
 | 
						|
    *
 | 
						|
    *   x + y + z = 1
 | 
						|
    *
 | 
						|
    * This describes the plane in (X,Y,Z) space that intersects each axis at the
 | 
						|
    * value 1.0; call this the chromaticity plane.  Thus the chromaticity
 | 
						|
    * calculation has scaled each end-point so that it is on the x+y+z=1 plane
 | 
						|
    * and chromaticity is the intersection of the vector from the origin to the
 | 
						|
    * (X,Y,Z) value with the chromaticity plane.
 | 
						|
    *
 | 
						|
    * To fully invert the chromaticity calculation we would need the three
 | 
						|
    * end-point scale factors, (red-scale, green-scale, blue-scale), but these
 | 
						|
    * were not recorded.  Instead we calculated the reference white (X,Y,Z) and
 | 
						|
    * recorded the chromaticity of this.  The reference white (X,Y,Z) would have
 | 
						|
    * given all three of the scale factors since:
 | 
						|
    *
 | 
						|
    *    color-C = color-c * color-scale
 | 
						|
    *    white-C = red-C + green-C + blue-C
 | 
						|
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
 | 
						|
    *
 | 
						|
    * But cHRM records only white-x and white-y, so we have lost the white scale
 | 
						|
    * factor:
 | 
						|
    *
 | 
						|
    *    white-C = white-c*white-scale
 | 
						|
    *
 | 
						|
    * To handle this the inverse transformation makes an arbitrary assumption
 | 
						|
    * about white-scale:
 | 
						|
    *
 | 
						|
    *    Assume: white-Y = 1.0
 | 
						|
    *    Hence:  white-scale = 1/white-y
 | 
						|
    *    Or:     red-Y + green-Y + blue-Y = 1.0
 | 
						|
    *
 | 
						|
    * Notice the last statement of the assumption gives an equation in three of
 | 
						|
    * the nine values we want to calculate.  8 more equations come from the
 | 
						|
    * above routine as summarised at the top above (the chromaticity
 | 
						|
    * calculation):
 | 
						|
    *
 | 
						|
    *    Given: color-x = color-X / (color-X + color-Y + color-Z)
 | 
						|
    *    Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
 | 
						|
    *
 | 
						|
    * This is 9 simultaneous equations in the 9 variables "color-C" and can be
 | 
						|
    * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
 | 
						|
    * determinants, however this is not as bad as it seems because only 28 of
 | 
						|
    * the total of 90 terms in the various matrices are non-zero.  Nevertheless
 | 
						|
    * Cramer's rule is notoriously numerically unstable because the determinant
 | 
						|
    * calculation involves the difference of large, but similar, numbers.  It is
 | 
						|
    * difficult to be sure that the calculation is stable for real world values
 | 
						|
    * and it is certain that it becomes unstable where the end points are close
 | 
						|
    * together.
 | 
						|
    *
 | 
						|
    * So this code uses the perhaps slightly less optimal but more
 | 
						|
    * understandable and totally obvious approach of calculating color-scale.
 | 
						|
    *
 | 
						|
    * This algorithm depends on the precision in white-scale and that is
 | 
						|
    * (1/white-y), so we can immediately see that as white-y approaches 0 the
 | 
						|
    * accuracy inherent in the cHRM chunk drops off substantially.
 | 
						|
    *
 | 
						|
    * libpng arithmetic: a simple invertion of the above equations
 | 
						|
    * ------------------------------------------------------------
 | 
						|
    *
 | 
						|
    *    white_scale = 1/white-y
 | 
						|
    *    white-X = white-x * white-scale
 | 
						|
    *    white-Y = 1.0
 | 
						|
    *    white-Z = (1 - white-x - white-y) * white_scale
 | 
						|
    *
 | 
						|
    *    white-C = red-C + green-C + blue-C
 | 
						|
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
 | 
						|
    *
 | 
						|
    * This gives us three equations in (red-scale,green-scale,blue-scale) where
 | 
						|
    * all the coefficients are now known:
 | 
						|
    *
 | 
						|
    *    red-x*red-scale + green-x*green-scale + blue-x*blue-scale
 | 
						|
    *       = white-x/white-y
 | 
						|
    *    red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
 | 
						|
    *    red-z*red-scale + green-z*green-scale + blue-z*blue-scale
 | 
						|
    *       = (1 - white-x - white-y)/white-y
 | 
						|
    *
 | 
						|
    * In the last equation color-z is (1 - color-x - color-y) so we can add all
 | 
						|
    * three equations together to get an alternative third:
 | 
						|
    *
 | 
						|
    *    red-scale + green-scale + blue-scale = 1/white-y = white-scale
 | 
						|
    *
 | 
						|
    * So now we have a Cramer's rule solution where the determinants are just
 | 
						|
    * 3x3 - far more tractible.  Unfortunately 3x3 determinants still involve
 | 
						|
    * multiplication of three coefficients so we can't guarantee to avoid
 | 
						|
    * overflow in the libpng fixed point representation.  Using Cramer's rule in
 | 
						|
    * floating point is probably a good choice here, but it's not an option for
 | 
						|
    * fixed point.  Instead proceed to simplify the first two equations by
 | 
						|
    * eliminating what is likely to be the largest value, blue-scale:
 | 
						|
    *
 | 
						|
    *    blue-scale = white-scale - red-scale - green-scale
 | 
						|
    *
 | 
						|
    * Hence:
 | 
						|
    *
 | 
						|
    *    (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
 | 
						|
    *                (white-x - blue-x)*white-scale
 | 
						|
    *
 | 
						|
    *    (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
 | 
						|
    *                1 - blue-y*white-scale
 | 
						|
    *
 | 
						|
    * And now we can trivially solve for (red-scale,green-scale):
 | 
						|
    *
 | 
						|
    *    green-scale =
 | 
						|
    *                (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
 | 
						|
    *                -----------------------------------------------------------
 | 
						|
    *                                  green-x - blue-x
 | 
						|
    *
 | 
						|
    *    red-scale =
 | 
						|
    *                1 - blue-y*white-scale - (green-y - blue-y) * green-scale
 | 
						|
    *                ---------------------------------------------------------
 | 
						|
    *                                  red-y - blue-y
 | 
						|
    *
 | 
						|
    * Hence:
 | 
						|
    *
 | 
						|
    *    red-scale =
 | 
						|
    *          ( (green-x - blue-x) * (white-y - blue-y) -
 | 
						|
    *            (green-y - blue-y) * (white-x - blue-x) ) / white-y
 | 
						|
    * -------------------------------------------------------------------------
 | 
						|
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
 | 
						|
    *
 | 
						|
    *    green-scale =
 | 
						|
    *          ( (red-y - blue-y) * (white-x - blue-x) -
 | 
						|
    *            (red-x - blue-x) * (white-y - blue-y) ) / white-y
 | 
						|
    * -------------------------------------------------------------------------
 | 
						|
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
 | 
						|
    *
 | 
						|
    * Accuracy:
 | 
						|
    * The input values have 5 decimal digits of accuracy.  The values are all in
 | 
						|
    * the range 0 < value < 1, so simple products are in the same range but may
 | 
						|
    * need up to 10 decimal digits to preserve the original precision and avoid
 | 
						|
    * underflow.  Because we are using a 32-bit signed representation we cannot
 | 
						|
    * match this; the best is a little over 9 decimal digits, less than 10.
 | 
						|
    *
 | 
						|
    * The approach used here is to preserve the maximum precision within the
 | 
						|
    * signed representation.  Because the red-scale calculation above uses the
 | 
						|
    * difference between two products of values that must be in the range -1..+1
 | 
						|
    * it is sufficient to divide the product by 7; ceil(100,000/32767*2).  The
 | 
						|
    * factor is irrelevant in the calculation because it is applied to both
 | 
						|
    * numerator and denominator.
 | 
						|
    *
 | 
						|
    * Note that the values of the differences of the products of the
 | 
						|
    * chromaticities in the above equations tend to be small, for example for
 | 
						|
    * the sRGB chromaticities they are:
 | 
						|
    *
 | 
						|
    * red numerator:    -0.04751
 | 
						|
    * green numerator:  -0.08788
 | 
						|
    * denominator:      -0.2241 (without white-y multiplication)
 | 
						|
    *
 | 
						|
    *  The resultant Y coefficients from the chromaticities of some widely used
 | 
						|
    *  color space definitions are (to 15 decimal places):
 | 
						|
    *
 | 
						|
    *  sRGB
 | 
						|
    *    0.212639005871510 0.715168678767756 0.072192315360734
 | 
						|
    *  Kodak ProPhoto
 | 
						|
    *    0.288071128229293 0.711843217810102 0.000085653960605
 | 
						|
    *  Adobe RGB
 | 
						|
    *    0.297344975250536 0.627363566255466 0.075291458493998
 | 
						|
    *  Adobe Wide Gamut RGB
 | 
						|
    *    0.258728243040113 0.724682314948566 0.016589442011321
 | 
						|
    */
 | 
						|
   /* By the argument, above overflow should be impossible here. The return
 | 
						|
    * value of 2 indicates an internal error to the caller.
 | 
						|
    */
 | 
						|
   if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.redy - xy.bluey, 7)) return 2;
 | 
						|
   if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.redx - xy.bluex, 7)) return 2;
 | 
						|
   denominator = left - right;
 | 
						|
 | 
						|
   /* Now find the red numerator. */
 | 
						|
   if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
 | 
						|
   if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
 | 
						|
 | 
						|
   /* Overflow is possible here and it indicates an extreme set of PNG cHRM
 | 
						|
    * chunk values.  This calculation actually returns the reciprocal of the
 | 
						|
    * scale value because this allows us to delay the multiplication of white-y
 | 
						|
    * into the denominator, which tends to produce a small number.
 | 
						|
    */
 | 
						|
   if (!png_muldiv(&red_inverse, xy.whitey, denominator, left-right) ||
 | 
						|
       red_inverse <= xy.whitey /* r+g+b scales = white scale */)
 | 
						|
      return 1;
 | 
						|
 | 
						|
   /* Similarly for green_inverse: */
 | 
						|
   if (!png_muldiv(&left, xy.redy-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
 | 
						|
   if (!png_muldiv(&right, xy.redx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
 | 
						|
   if (!png_muldiv(&green_inverse, xy.whitey, denominator, left-right) ||
 | 
						|
       green_inverse <= xy.whitey)
 | 
						|
      return 1;
 | 
						|
 | 
						|
   /* And the blue scale, the checks above guarantee this can't overflow but it
 | 
						|
    * can still produce 0 for extreme cHRM values.
 | 
						|
    */
 | 
						|
   blue_scale = png_reciprocal(xy.whitey) - png_reciprocal(red_inverse) -
 | 
						|
      png_reciprocal(green_inverse);
 | 
						|
   if (blue_scale <= 0) return 1;
 | 
						|
 | 
						|
 | 
						|
   /* And fill in the png_XYZ: */
 | 
						|
   if (!png_muldiv(&XYZ->redX, xy.redx, PNG_FP_1, red_inverse)) return 1;
 | 
						|
   if (!png_muldiv(&XYZ->redY, xy.redy, PNG_FP_1, red_inverse)) return 1;
 | 
						|
   if (!png_muldiv(&XYZ->redZ, PNG_FP_1 - xy.redx - xy.redy, PNG_FP_1,
 | 
						|
      red_inverse))
 | 
						|
      return 1;
 | 
						|
 | 
						|
   if (!png_muldiv(&XYZ->greenX, xy.greenx, PNG_FP_1, green_inverse)) return 1;
 | 
						|
   if (!png_muldiv(&XYZ->greenY, xy.greeny, PNG_FP_1, green_inverse)) return 1;
 | 
						|
   if (!png_muldiv(&XYZ->greenZ, PNG_FP_1 - xy.greenx - xy.greeny, PNG_FP_1,
 | 
						|
      green_inverse))
 | 
						|
      return 1;
 | 
						|
 | 
						|
   if (!png_muldiv(&XYZ->blueX, xy.bluex, blue_scale, PNG_FP_1)) return 1;
 | 
						|
   if (!png_muldiv(&XYZ->blueY, xy.bluey, blue_scale, PNG_FP_1)) return 1;
 | 
						|
   if (!png_muldiv(&XYZ->blueZ, PNG_FP_1 - xy.bluex - xy.bluey, blue_scale,
 | 
						|
      PNG_FP_1))
 | 
						|
      return 1;
 | 
						|
 | 
						|
   return 0; /*success*/
 | 
						|
}
 | 
						|
 | 
						|
int png_XYZ_from_xy_checked(png_structp png_ptr, png_XYZ *XYZ, png_xy xy)
 | 
						|
{
 | 
						|
   switch (png_XYZ_from_xy(XYZ, xy))
 | 
						|
   {
 | 
						|
      case 0: /* success */
 | 
						|
         return 1;
 | 
						|
 | 
						|
      case 1:
 | 
						|
         /* The chunk may be technically valid, but we got png_fixed_point
 | 
						|
          * overflow while trying to get XYZ values out of it.  This is
 | 
						|
          * entirely benign - the cHRM chunk is pretty extreme.
 | 
						|
          */
 | 
						|
         png_warning(png_ptr,
 | 
						|
            "extreme cHRM chunk cannot be converted to tristimulus values");
 | 
						|
         break;
 | 
						|
 | 
						|
      default:
 | 
						|
         /* libpng is broken; this should be a warning but if it happens we
 | 
						|
          * want error reports so for the moment it is an error.
 | 
						|
          */
 | 
						|
         png_error(png_ptr, "internal error in png_XYZ_from_xy");
 | 
						|
         break;
 | 
						|
   }
 | 
						|
 | 
						|
   /* ERROR RETURN */
 | 
						|
   return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void /* PRIVATE */
 | 
						|
png_check_IHDR(png_structp png_ptr,
 | 
						|
   png_uint_32 width, png_uint_32 height, int bit_depth,
 | 
						|
   int color_type, int interlace_type, int compression_type,
 | 
						|
   int filter_type)
 | 
						|
{
 | 
						|
   int error = 0;
 | 
						|
 | 
						|
   /* Check for width and height valid values */
 | 
						|
   if (width == 0)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Image width is zero in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
   if (height == 0)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Image height is zero in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
 | 
						|
   if (width > png_ptr->user_width_max)
 | 
						|
 | 
						|
#  else
 | 
						|
   if (width > PNG_USER_WIDTH_MAX)
 | 
						|
#  endif
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Image width exceeds user limit in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
 | 
						|
   if (height > png_ptr->user_height_max)
 | 
						|
#  else
 | 
						|
   if (height > PNG_USER_HEIGHT_MAX)
 | 
						|
#  endif
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Image height exceeds user limit in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
   if (width > PNG_UINT_31_MAX)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Invalid image width in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
   if (height > PNG_UINT_31_MAX)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Invalid image height in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
   if (width > (PNG_UINT_32_MAX
 | 
						|
                 >> 3)      /* 8-byte RGBA pixels */
 | 
						|
                 - 48       /* bigrowbuf hack */
 | 
						|
                 - 1        /* filter byte */
 | 
						|
                 - 7*8      /* rounding of width to multiple of 8 pixels */
 | 
						|
                 - 8)       /* extra max_pixel_depth pad */
 | 
						|
      png_warning(png_ptr, "Width is too large for libpng to process pixels");
 | 
						|
 | 
						|
   /* Check other values */
 | 
						|
   if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
 | 
						|
       bit_depth != 8 && bit_depth != 16)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Invalid bit depth in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
   if (color_type < 0 || color_type == 1 ||
 | 
						|
       color_type == 5 || color_type > 6)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Invalid color type in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
   if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
 | 
						|
       ((color_type == PNG_COLOR_TYPE_RGB ||
 | 
						|
         color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
 | 
						|
         color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
   if (interlace_type >= PNG_INTERLACE_LAST)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Unknown interlace method in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
   if (compression_type != PNG_COMPRESSION_TYPE_BASE)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Unknown compression method in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
 | 
						|
#  ifdef PNG_MNG_FEATURES_SUPPORTED
 | 
						|
   /* Accept filter_method 64 (intrapixel differencing) only if
 | 
						|
    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
 | 
						|
    * 2. Libpng did not read a PNG signature (this filter_method is only
 | 
						|
    *    used in PNG datastreams that are embedded in MNG datastreams) and
 | 
						|
    * 3. The application called png_permit_mng_features with a mask that
 | 
						|
    *    included PNG_FLAG_MNG_FILTER_64 and
 | 
						|
    * 4. The filter_method is 64 and
 | 
						|
    * 5. The color_type is RGB or RGBA
 | 
						|
    */
 | 
						|
   if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) &&
 | 
						|
       png_ptr->mng_features_permitted)
 | 
						|
      png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
 | 
						|
 | 
						|
   if (filter_type != PNG_FILTER_TYPE_BASE)
 | 
						|
   {
 | 
						|
      if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
 | 
						|
          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
 | 
						|
          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
 | 
						|
          (color_type == PNG_COLOR_TYPE_RGB ||
 | 
						|
          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
 | 
						|
      {
 | 
						|
         png_warning(png_ptr, "Unknown filter method in IHDR");
 | 
						|
         error = 1;
 | 
						|
      }
 | 
						|
 | 
						|
      if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE)
 | 
						|
      {
 | 
						|
         png_warning(png_ptr, "Invalid filter method in IHDR");
 | 
						|
         error = 1;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
#  else
 | 
						|
   if (filter_type != PNG_FILTER_TYPE_BASE)
 | 
						|
   {
 | 
						|
      png_warning(png_ptr, "Unknown filter method in IHDR");
 | 
						|
      error = 1;
 | 
						|
   }
 | 
						|
#  endif
 | 
						|
 | 
						|
   if (error == 1)
 | 
						|
      png_error(png_ptr, "Invalid IHDR data");
 | 
						|
}
 | 
						|
 | 
						|
#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
 | 
						|
/* ASCII to fp functions */
 | 
						|
/* Check an ASCII formated floating point value, see the more detailed
 | 
						|
 * comments in pngpriv.h
 | 
						|
 */
 | 
						|
/* The following is used internally to preserve the sticky flags */
 | 
						|
#define png_fp_add(state, flags) ((state) |= (flags))
 | 
						|
#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
 | 
						|
 | 
						|
int /* PRIVATE */
 | 
						|
png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
 | 
						|
   png_size_tp whereami)
 | 
						|
{
 | 
						|
   int state = *statep;
 | 
						|
   png_size_t i = *whereami;
 | 
						|
 | 
						|
   while (i < size)
 | 
						|
   {
 | 
						|
      int type;
 | 
						|
      /* First find the type of the next character */
 | 
						|
      switch (string[i])
 | 
						|
      {
 | 
						|
      case 43:  type = PNG_FP_SAW_SIGN;                   break;
 | 
						|
      case 45:  type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
 | 
						|
      case 46:  type = PNG_FP_SAW_DOT;                    break;
 | 
						|
      case 48:  type = PNG_FP_SAW_DIGIT;                  break;
 | 
						|
      case 49: case 50: case 51: case 52:
 | 
						|
      case 53: case 54: case 55: case 56:
 | 
						|
      case 57:  type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
 | 
						|
      case 69:
 | 
						|
      case 101: type = PNG_FP_SAW_E;                      break;
 | 
						|
      default:  goto PNG_FP_End;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Now deal with this type according to the current
 | 
						|
       * state, the type is arranged to not overlap the
 | 
						|
       * bits of the PNG_FP_STATE.
 | 
						|
       */
 | 
						|
      switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
 | 
						|
      {
 | 
						|
      case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
 | 
						|
         if (state & PNG_FP_SAW_ANY)
 | 
						|
            goto PNG_FP_End; /* not a part of the number */
 | 
						|
 | 
						|
         png_fp_add(state, type);
 | 
						|
         break;
 | 
						|
 | 
						|
      case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
 | 
						|
         /* Ok as trailer, ok as lead of fraction. */
 | 
						|
         if (state & PNG_FP_SAW_DOT) /* two dots */
 | 
						|
            goto PNG_FP_End;
 | 
						|
 | 
						|
         else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
 | 
						|
            png_fp_add(state, type);
 | 
						|
 | 
						|
         else
 | 
						|
            png_fp_set(state, PNG_FP_FRACTION | type);
 | 
						|
 | 
						|
         break;
 | 
						|
 | 
						|
      case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
 | 
						|
         if (state & PNG_FP_SAW_DOT) /* delayed fraction */
 | 
						|
            png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
 | 
						|
 | 
						|
         png_fp_add(state, type | PNG_FP_WAS_VALID);
 | 
						|
 | 
						|
         break;
 | 
						|
 | 
						|
      case PNG_FP_INTEGER + PNG_FP_SAW_E:
 | 
						|
         if ((state & PNG_FP_SAW_DIGIT) == 0)
 | 
						|
            goto PNG_FP_End;
 | 
						|
 | 
						|
         png_fp_set(state, PNG_FP_EXPONENT);
 | 
						|
 | 
						|
         break;
 | 
						|
 | 
						|
   /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
 | 
						|
         goto PNG_FP_End; ** no sign in fraction */
 | 
						|
 | 
						|
   /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
 | 
						|
         goto PNG_FP_End; ** Because SAW_DOT is always set */
 | 
						|
 | 
						|
      case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
 | 
						|
         png_fp_add(state, type | PNG_FP_WAS_VALID);
 | 
						|
         break;
 | 
						|
 | 
						|
      case PNG_FP_FRACTION + PNG_FP_SAW_E:
 | 
						|
         /* This is correct because the trailing '.' on an
 | 
						|
          * integer is handled above - so we can only get here
 | 
						|
          * with the sequence ".E" (with no preceding digits).
 | 
						|
          */
 | 
						|
         if ((state & PNG_FP_SAW_DIGIT) == 0)
 | 
						|
            goto PNG_FP_End;
 | 
						|
 | 
						|
         png_fp_set(state, PNG_FP_EXPONENT);
 | 
						|
 | 
						|
         break;
 | 
						|
 | 
						|
      case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
 | 
						|
         if (state & PNG_FP_SAW_ANY)
 | 
						|
            goto PNG_FP_End; /* not a part of the number */
 | 
						|
 | 
						|
         png_fp_add(state, PNG_FP_SAW_SIGN);
 | 
						|
 | 
						|
         break;
 | 
						|
 | 
						|
   /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
 | 
						|
         goto PNG_FP_End; */
 | 
						|
 | 
						|
      case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
 | 
						|
         png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
 | 
						|
 | 
						|
         break;
 | 
						|
 | 
						|
   /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
 | 
						|
         goto PNG_FP_End; */
 | 
						|
 | 
						|
      default: goto PNG_FP_End; /* I.e. break 2 */
 | 
						|
      }
 | 
						|
 | 
						|
      /* The character seems ok, continue. */
 | 
						|
      ++i;
 | 
						|
   }
 | 
						|
 | 
						|
PNG_FP_End:
 | 
						|
   /* Here at the end, update the state and return the correct
 | 
						|
    * return code.
 | 
						|
    */
 | 
						|
   *statep = state;
 | 
						|
   *whereami = i;
 | 
						|
 | 
						|
   return (state & PNG_FP_SAW_DIGIT) != 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* The same but for a complete string. */
 | 
						|
int
 | 
						|
png_check_fp_string(png_const_charp string, png_size_t size)
 | 
						|
{
 | 
						|
   int        state=0;
 | 
						|
   png_size_t char_index=0;
 | 
						|
 | 
						|
   if (png_check_fp_number(string, size, &state, &char_index) &&
 | 
						|
      (char_index == size || string[char_index] == 0))
 | 
						|
      return state /* must be non-zero - see above */;
 | 
						|
 | 
						|
   return 0; /* i.e. fail */
 | 
						|
}
 | 
						|
#endif /* pCAL or sCAL */
 | 
						|
 | 
						|
#ifdef PNG_READ_sCAL_SUPPORTED
 | 
						|
#  ifdef PNG_FLOATING_POINT_SUPPORTED
 | 
						|
/* Utility used below - a simple accurate power of ten from an integral
 | 
						|
 * exponent.
 | 
						|
 */
 | 
						|
static double
 | 
						|
png_pow10(int power)
 | 
						|
{
 | 
						|
   int recip = 0;
 | 
						|
   double d = 1.0;
 | 
						|
 | 
						|
   /* Handle negative exponent with a reciprocal at the end because
 | 
						|
    * 10 is exact whereas .1 is inexact in base 2
 | 
						|
    */
 | 
						|
   if (power < 0)
 | 
						|
   {
 | 
						|
      if (power < DBL_MIN_10_EXP) return 0;
 | 
						|
      recip = 1, power = -power;
 | 
						|
   }
 | 
						|
 | 
						|
   if (power > 0)
 | 
						|
   {
 | 
						|
      /* Decompose power bitwise. */
 | 
						|
      double mult = 10.0;
 | 
						|
      do
 | 
						|
      {
 | 
						|
         if (power & 1) d *= mult;
 | 
						|
         mult *= mult;
 | 
						|
         power >>= 1;
 | 
						|
      }
 | 
						|
      while (power > 0);
 | 
						|
 | 
						|
      if (recip) d = 1/d;
 | 
						|
   }
 | 
						|
   /* else power is 0 and d is 1 */
 | 
						|
 | 
						|
   return d;
 | 
						|
}
 | 
						|
 | 
						|
/* Function to format a floating point value in ASCII with a given
 | 
						|
 * precision.
 | 
						|
 */
 | 
						|
void /* PRIVATE */
 | 
						|
png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
 | 
						|
    double fp, unsigned int precision)
 | 
						|
{
 | 
						|
   /* We use standard functions from math.h, but not printf because
 | 
						|
    * that would require stdio.  The caller must supply a buffer of
 | 
						|
    * sufficient size or we will png_error.  The tests on size and
 | 
						|
    * the space in ascii[] consumed are indicated below.
 | 
						|
    */
 | 
						|
   if (precision < 1)
 | 
						|
      precision = DBL_DIG;
 | 
						|
 | 
						|
   /* Enforce the limit of the implementation precision too. */
 | 
						|
   if (precision > DBL_DIG+1)
 | 
						|
      precision = DBL_DIG+1;
 | 
						|
 | 
						|
   /* Basic sanity checks */
 | 
						|
   if (size >= precision+5) /* See the requirements below. */
 | 
						|
   {
 | 
						|
      if (fp < 0)
 | 
						|
      {
 | 
						|
         fp = -fp;
 | 
						|
         *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1 */
 | 
						|
         --size;
 | 
						|
      }
 | 
						|
 | 
						|
      if (fp >= DBL_MIN && fp <= DBL_MAX)
 | 
						|
      {
 | 
						|
         int exp_b10;       /* A base 10 exponent */
 | 
						|
         double base;   /* 10^exp_b10 */
 | 
						|
 | 
						|
         /* First extract a base 10 exponent of the number,
 | 
						|
          * the calculation below rounds down when converting
 | 
						|
          * from base 2 to base 10 (multiply by log10(2) -
 | 
						|
          * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
 | 
						|
          * be increased.  Note that the arithmetic shift
 | 
						|
          * performs a floor() unlike C arithmetic - using a
 | 
						|
          * C multiply would break the following for negative
 | 
						|
          * exponents.
 | 
						|
          */
 | 
						|
         (void)frexp(fp, &exp_b10); /* exponent to base 2 */
 | 
						|
 | 
						|
         exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
 | 
						|
 | 
						|
         /* Avoid underflow here. */
 | 
						|
         base = png_pow10(exp_b10); /* May underflow */
 | 
						|
 | 
						|
         while (base < DBL_MIN || base < fp)
 | 
						|
         {
 | 
						|
            /* And this may overflow. */
 | 
						|
            double test = png_pow10(exp_b10+1);
 | 
						|
 | 
						|
            if (test <= DBL_MAX)
 | 
						|
               ++exp_b10, base = test;
 | 
						|
 | 
						|
            else
 | 
						|
               break;
 | 
						|
         }
 | 
						|
 | 
						|
         /* Normalize fp and correct exp_b10, after this fp is in the
 | 
						|
          * range [.1,1) and exp_b10 is both the exponent and the digit
 | 
						|
          * *before* which the decimal point should be inserted
 | 
						|
          * (starting with 0 for the first digit).  Note that this
 | 
						|
          * works even if 10^exp_b10 is out of range because of the
 | 
						|
          * test on DBL_MAX above.
 | 
						|
          */
 | 
						|
         fp /= base;
 | 
						|
         while (fp >= 1) fp /= 10, ++exp_b10;
 | 
						|
 | 
						|
         /* Because of the code above fp may, at this point, be
 | 
						|
          * less than .1, this is ok because the code below can
 | 
						|
          * handle the leading zeros this generates, so no attempt
 | 
						|
          * is made to correct that here.
 | 
						|
          */
 | 
						|
 | 
						|
         {
 | 
						|
            int czero, clead, cdigits;
 | 
						|
            char exponent[10];
 | 
						|
 | 
						|
            /* Allow up to two leading zeros - this will not lengthen
 | 
						|
             * the number compared to using E-n.
 | 
						|
             */
 | 
						|
            if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
 | 
						|
            {
 | 
						|
               czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */
 | 
						|
               exp_b10 = 0;      /* Dot added below before first output. */
 | 
						|
            }
 | 
						|
            else
 | 
						|
               czero = 0;    /* No zeros to add */
 | 
						|
 | 
						|
            /* Generate the digit list, stripping trailing zeros and
 | 
						|
             * inserting a '.' before a digit if the exponent is 0.
 | 
						|
             */
 | 
						|
            clead = czero; /* Count of leading zeros */
 | 
						|
            cdigits = 0;   /* Count of digits in list. */
 | 
						|
 | 
						|
            do
 | 
						|
            {
 | 
						|
               double d;
 | 
						|
 | 
						|
               fp *= 10.0;
 | 
						|
 | 
						|
               /* Use modf here, not floor and subtract, so that
 | 
						|
                * the separation is done in one step.  At the end
 | 
						|
                * of the loop don't break the number into parts so
 | 
						|
                * that the final digit is rounded.
 | 
						|
                */
 | 
						|
               if (cdigits+czero-clead+1 < (int)precision)
 | 
						|
                  fp = modf(fp, &d);
 | 
						|
 | 
						|
               else
 | 
						|
               {
 | 
						|
                  d = floor(fp + .5);
 | 
						|
 | 
						|
                  if (d > 9.0)
 | 
						|
                  {
 | 
						|
                     /* Rounding up to 10, handle that here. */
 | 
						|
                     if (czero > 0)
 | 
						|
                     {
 | 
						|
                        --czero, d = 1;
 | 
						|
                        if (cdigits == 0) --clead;
 | 
						|
                     }
 | 
						|
 | 
						|
                     else
 | 
						|
                     {
 | 
						|
                        while (cdigits > 0 && d > 9.0)
 | 
						|
                        {
 | 
						|
                           int ch = *--ascii;
 | 
						|
 | 
						|
                           if (exp_b10 != (-1))
 | 
						|
                              ++exp_b10;
 | 
						|
 | 
						|
                           else if (ch == 46)
 | 
						|
                           {
 | 
						|
                              ch = *--ascii, ++size;
 | 
						|
                              /* Advance exp_b10 to '1', so that the
 | 
						|
                               * decimal point happens after the
 | 
						|
                               * previous digit.
 | 
						|
                               */
 | 
						|
                              exp_b10 = 1;
 | 
						|
                           }
 | 
						|
 | 
						|
                           --cdigits;
 | 
						|
                           d = ch - 47;  /* I.e. 1+(ch-48) */
 | 
						|
                        }
 | 
						|
 | 
						|
                        /* Did we reach the beginning? If so adjust the
 | 
						|
                         * exponent but take into account the leading
 | 
						|
                         * decimal point.
 | 
						|
                         */
 | 
						|
                        if (d > 9.0)  /* cdigits == 0 */
 | 
						|
                        {
 | 
						|
                           if (exp_b10 == (-1))
 | 
						|
                           {
 | 
						|
                              /* Leading decimal point (plus zeros?), if
 | 
						|
                               * we lose the decimal point here it must
 | 
						|
                               * be reentered below.
 | 
						|
                               */
 | 
						|
                              int ch = *--ascii;
 | 
						|
 | 
						|
                              if (ch == 46)
 | 
						|
                                 ++size, exp_b10 = 1;
 | 
						|
 | 
						|
                              /* Else lost a leading zero, so 'exp_b10' is
 | 
						|
                               * still ok at (-1)
 | 
						|
                               */
 | 
						|
                           }
 | 
						|
                           else
 | 
						|
                              ++exp_b10;
 | 
						|
 | 
						|
                           /* In all cases we output a '1' */
 | 
						|
                           d = 1.0;
 | 
						|
                        }
 | 
						|
                     }
 | 
						|
                  }
 | 
						|
                  fp = 0; /* Guarantees termination below. */
 | 
						|
               }
 | 
						|
 | 
						|
               if (d == 0.0)
 | 
						|
               {
 | 
						|
                  ++czero;
 | 
						|
                  if (cdigits == 0) ++clead;
 | 
						|
               }
 | 
						|
 | 
						|
               else
 | 
						|
               {
 | 
						|
                  /* Included embedded zeros in the digit count. */
 | 
						|
                  cdigits += czero - clead;
 | 
						|
                  clead = 0;
 | 
						|
 | 
						|
                  while (czero > 0)
 | 
						|
                  {
 | 
						|
                     /* exp_b10 == (-1) means we just output the decimal
 | 
						|
                      * place - after the DP don't adjust 'exp_b10' any
 | 
						|
                      * more!
 | 
						|
                      */
 | 
						|
                     if (exp_b10 != (-1))
 | 
						|
                     {
 | 
						|
                        if (exp_b10 == 0) *ascii++ = 46, --size;
 | 
						|
                        /* PLUS 1: TOTAL 4 */
 | 
						|
                        --exp_b10;
 | 
						|
                     }
 | 
						|
                     *ascii++ = 48, --czero;
 | 
						|
                  }
 | 
						|
 | 
						|
                  if (exp_b10 != (-1))
 | 
						|
                  {
 | 
						|
                     if (exp_b10 == 0) *ascii++ = 46, --size; /* counted
 | 
						|
                                                                 above */
 | 
						|
                     --exp_b10;
 | 
						|
                  }
 | 
						|
 | 
						|
                  *ascii++ = (char)(48 + (int)d), ++cdigits;
 | 
						|
               }
 | 
						|
            }
 | 
						|
            while (cdigits+czero-clead < (int)precision && fp > DBL_MIN);
 | 
						|
 | 
						|
            /* The total output count (max) is now 4+precision */
 | 
						|
 | 
						|
            /* Check for an exponent, if we don't need one we are
 | 
						|
             * done and just need to terminate the string.  At
 | 
						|
             * this point exp_b10==(-1) is effectively if flag - it got
 | 
						|
             * to '-1' because of the decrement after outputing
 | 
						|
             * the decimal point above (the exponent required is
 | 
						|
             * *not* -1!)
 | 
						|
             */
 | 
						|
            if (exp_b10 >= (-1) && exp_b10 <= 2)
 | 
						|
            {
 | 
						|
               /* The following only happens if we didn't output the
 | 
						|
                * leading zeros above for negative exponent, so this
 | 
						|
                * doest add to the digit requirement.  Note that the
 | 
						|
                * two zeros here can only be output if the two leading
 | 
						|
                * zeros were *not* output, so this doesn't increase
 | 
						|
                * the output count.
 | 
						|
                */
 | 
						|
               while (--exp_b10 >= 0) *ascii++ = 48;
 | 
						|
 | 
						|
               *ascii = 0;
 | 
						|
 | 
						|
               /* Total buffer requirement (including the '\0') is
 | 
						|
                * 5+precision - see check at the start.
 | 
						|
                */
 | 
						|
               return;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Here if an exponent is required, adjust size for
 | 
						|
             * the digits we output but did not count.  The total
 | 
						|
             * digit output here so far is at most 1+precision - no
 | 
						|
             * decimal point and no leading or trailing zeros have
 | 
						|
             * been output.
 | 
						|
             */
 | 
						|
            size -= cdigits;
 | 
						|
 | 
						|
            *ascii++ = 69, --size;    /* 'E': PLUS 1 TOTAL 2+precision */
 | 
						|
 | 
						|
            /* The following use of an unsigned temporary avoids ambiguities in
 | 
						|
             * the signed arithmetic on exp_b10 and permits GCC at least to do
 | 
						|
             * better optimization.
 | 
						|
             */
 | 
						|
            {
 | 
						|
               unsigned int uexp_b10;
 | 
						|
 | 
						|
               if (exp_b10 < 0)
 | 
						|
               {
 | 
						|
                  *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
 | 
						|
                  uexp_b10 = -exp_b10;
 | 
						|
               }
 | 
						|
 | 
						|
               else
 | 
						|
                  uexp_b10 = exp_b10;
 | 
						|
 | 
						|
               cdigits = 0;
 | 
						|
 | 
						|
               while (uexp_b10 > 0)
 | 
						|
               {
 | 
						|
                  exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
 | 
						|
                  uexp_b10 /= 10;
 | 
						|
               }
 | 
						|
            }
 | 
						|
 | 
						|
            /* Need another size check here for the exponent digits, so
 | 
						|
             * this need not be considered above.
 | 
						|
             */
 | 
						|
            if ((int)size > cdigits)
 | 
						|
            {
 | 
						|
               while (cdigits > 0) *ascii++ = exponent[--cdigits];
 | 
						|
 | 
						|
               *ascii = 0;
 | 
						|
 | 
						|
               return;
 | 
						|
            }
 | 
						|
         }
 | 
						|
      }
 | 
						|
      else if (!(fp >= DBL_MIN))
 | 
						|
      {
 | 
						|
         *ascii++ = 48; /* '0' */
 | 
						|
         *ascii = 0;
 | 
						|
         return;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
         *ascii++ = 105; /* 'i' */
 | 
						|
         *ascii++ = 110; /* 'n' */
 | 
						|
         *ascii++ = 102; /* 'f' */
 | 
						|
         *ascii = 0;
 | 
						|
         return;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   /* Here on buffer too small. */
 | 
						|
   png_error(png_ptr, "ASCII conversion buffer too small");
 | 
						|
}
 | 
						|
 | 
						|
#  endif /* FLOATING_POINT */
 | 
						|
 | 
						|
#  ifdef PNG_FIXED_POINT_SUPPORTED
 | 
						|
/* Function to format a fixed point value in ASCII.
 | 
						|
 */
 | 
						|
void /* PRIVATE */
 | 
						|
png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size,
 | 
						|
    png_fixed_point fp)
 | 
						|
{
 | 
						|
   /* Require space for 10 decimal digits, a decimal point, a minus sign and a
 | 
						|
    * trailing \0, 13 characters:
 | 
						|
    */
 | 
						|
   if (size > 12)
 | 
						|
   {
 | 
						|
      png_uint_32 num;
 | 
						|
 | 
						|
      /* Avoid overflow here on the minimum integer. */
 | 
						|
      if (fp < 0)
 | 
						|
         *ascii++ = 45, --size, num = -fp;
 | 
						|
      else
 | 
						|
         num = fp;
 | 
						|
 | 
						|
      if (num <= 0x80000000) /* else overflowed */
 | 
						|
      {
 | 
						|
         unsigned int ndigits = 0, first = 16 /* flag value */;
 | 
						|
         char digits[10];
 | 
						|
 | 
						|
         while (num)
 | 
						|
         {
 | 
						|
            /* Split the low digit off num: */
 | 
						|
            unsigned int tmp = num/10;
 | 
						|
            num -= tmp*10;
 | 
						|
            digits[ndigits++] = (char)(48 + num);
 | 
						|
            /* Record the first non-zero digit, note that this is a number
 | 
						|
             * starting at 1, it's not actually the array index.
 | 
						|
             */
 | 
						|
            if (first == 16 && num > 0)
 | 
						|
               first = ndigits;
 | 
						|
            num = tmp;
 | 
						|
         }
 | 
						|
 | 
						|
         if (ndigits > 0)
 | 
						|
         {
 | 
						|
            while (ndigits > 5) *ascii++ = digits[--ndigits];
 | 
						|
            /* The remaining digits are fractional digits, ndigits is '5' or
 | 
						|
             * smaller at this point.  It is certainly not zero.  Check for a
 | 
						|
             * non-zero fractional digit:
 | 
						|
             */
 | 
						|
            if (first <= 5)
 | 
						|
            {
 | 
						|
               unsigned int i;
 | 
						|
               *ascii++ = 46; /* decimal point */
 | 
						|
               /* ndigits may be <5 for small numbers, output leading zeros
 | 
						|
                * then ndigits digits to first:
 | 
						|
                */
 | 
						|
               i = 5;
 | 
						|
               while (ndigits < i) *ascii++ = 48, --i;
 | 
						|
               while (ndigits >= first) *ascii++ = digits[--ndigits];
 | 
						|
               /* Don't output the trailing zeros! */
 | 
						|
            }
 | 
						|
         }
 | 
						|
         else
 | 
						|
            *ascii++ = 48;
 | 
						|
 | 
						|
         /* And null terminate the string: */
 | 
						|
         *ascii = 0;
 | 
						|
         return;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   /* Here on buffer too small. */
 | 
						|
   png_error(png_ptr, "ASCII conversion buffer too small");
 | 
						|
}
 | 
						|
#   endif /* FIXED_POINT */
 | 
						|
#endif /* READ_SCAL */
 | 
						|
 | 
						|
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
 | 
						|
   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED)
 | 
						|
png_fixed_point
 | 
						|
png_fixed(png_structp png_ptr, double fp, png_const_charp text)
 | 
						|
{
 | 
						|
   double r = floor(100000 * fp + .5);
 | 
						|
 | 
						|
   if (r > 2147483647. || r < -2147483648.)
 | 
						|
      png_fixed_error(png_ptr, text);
 | 
						|
 | 
						|
   return (png_fixed_point)r;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(PNG_READ_GAMMA_SUPPORTED) || \
 | 
						|
    defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG__READ_pHYs_SUPPORTED)
 | 
						|
/* muldiv functions */
 | 
						|
/* This API takes signed arguments and rounds the result to the nearest
 | 
						|
 * integer (or, for a fixed point number - the standard argument - to
 | 
						|
 * the nearest .00001).  Overflow and divide by zero are signalled in
 | 
						|
 * the result, a boolean - true on success, false on overflow.
 | 
						|
 */
 | 
						|
int
 | 
						|
png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
 | 
						|
    png_int_32 divisor)
 | 
						|
{
 | 
						|
   /* Return a * times / divisor, rounded. */
 | 
						|
   if (divisor != 0)
 | 
						|
   {
 | 
						|
      if (a == 0 || times == 0)
 | 
						|
      {
 | 
						|
         *res = 0;
 | 
						|
         return 1;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | 
						|
         double r = a;
 | 
						|
         r *= times;
 | 
						|
         r /= divisor;
 | 
						|
         r = floor(r+.5);
 | 
						|
 | 
						|
         /* A png_fixed_point is a 32-bit integer. */
 | 
						|
         if (r <= 2147483647. && r >= -2147483648.)
 | 
						|
         {
 | 
						|
            *res = (png_fixed_point)r;
 | 
						|
            return 1;
 | 
						|
         }
 | 
						|
#else
 | 
						|
         int negative = 0;
 | 
						|
         png_uint_32 A, T, D;
 | 
						|
         png_uint_32 s16, s32, s00;
 | 
						|
 | 
						|
         if (a < 0)
 | 
						|
            negative = 1, A = -a;
 | 
						|
         else
 | 
						|
            A = a;
 | 
						|
 | 
						|
         if (times < 0)
 | 
						|
            negative = !negative, T = -times;
 | 
						|
         else
 | 
						|
            T = times;
 | 
						|
 | 
						|
         if (divisor < 0)
 | 
						|
            negative = !negative, D = -divisor;
 | 
						|
         else
 | 
						|
            D = divisor;
 | 
						|
 | 
						|
         /* Following can't overflow because the arguments only
 | 
						|
          * have 31 bits each, however the result may be 32 bits.
 | 
						|
          */
 | 
						|
         s16 = (A >> 16) * (T & 0xffff) +
 | 
						|
                           (A & 0xffff) * (T >> 16);
 | 
						|
         /* Can't overflow because the a*times bit is only 30
 | 
						|
          * bits at most.
 | 
						|
          */
 | 
						|
         s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
 | 
						|
         s00 = (A & 0xffff) * (T & 0xffff);
 | 
						|
 | 
						|
         s16 = (s16 & 0xffff) << 16;
 | 
						|
         s00 += s16;
 | 
						|
 | 
						|
         if (s00 < s16)
 | 
						|
            ++s32; /* carry */
 | 
						|
 | 
						|
         if (s32 < D) /* else overflow */
 | 
						|
         {
 | 
						|
            /* s32.s00 is now the 64-bit product, do a standard
 | 
						|
             * division, we know that s32 < D, so the maximum
 | 
						|
             * required shift is 31.
 | 
						|
             */
 | 
						|
            int bitshift = 32;
 | 
						|
            png_fixed_point result = 0; /* NOTE: signed */
 | 
						|
 | 
						|
            while (--bitshift >= 0)
 | 
						|
            {
 | 
						|
               png_uint_32 d32, d00;
 | 
						|
 | 
						|
               if (bitshift > 0)
 | 
						|
                  d32 = D >> (32-bitshift), d00 = D << bitshift;
 | 
						|
 | 
						|
               else
 | 
						|
                  d32 = 0, d00 = D;
 | 
						|
 | 
						|
               if (s32 > d32)
 | 
						|
               {
 | 
						|
                  if (s00 < d00) --s32; /* carry */
 | 
						|
                  s32 -= d32, s00 -= d00, result += 1<<bitshift;
 | 
						|
               }
 | 
						|
 | 
						|
               else
 | 
						|
                  if (s32 == d32 && s00 >= d00)
 | 
						|
                     s32 = 0, s00 -= d00, result += 1<<bitshift;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Handle the rounding. */
 | 
						|
            if (s00 >= (D >> 1))
 | 
						|
               ++result;
 | 
						|
 | 
						|
            if (negative)
 | 
						|
               result = -result;
 | 
						|
 | 
						|
            /* Check for overflow. */
 | 
						|
            if ((negative && result <= 0) || (!negative && result >= 0))
 | 
						|
            {
 | 
						|
               *res = result;
 | 
						|
               return 1;
 | 
						|
            }
 | 
						|
         }
 | 
						|
#endif
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   return 0;
 | 
						|
}
 | 
						|
#endif /* READ_GAMMA || INCH_CONVERSIONS */
 | 
						|
 | 
						|
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
 | 
						|
/* The following is for when the caller doesn't much care about the
 | 
						|
 * result.
 | 
						|
 */
 | 
						|
png_fixed_point
 | 
						|
png_muldiv_warn(png_structp png_ptr, png_fixed_point a, png_int_32 times,
 | 
						|
    png_int_32 divisor)
 | 
						|
{
 | 
						|
   png_fixed_point result;
 | 
						|
 | 
						|
   if (png_muldiv(&result, a, times, divisor))
 | 
						|
      return result;
 | 
						|
 | 
						|
   png_warning(png_ptr, "fixed point overflow ignored");
 | 
						|
   return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gamma */
 | 
						|
/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
 | 
						|
png_fixed_point
 | 
						|
png_reciprocal(png_fixed_point a)
 | 
						|
{
 | 
						|
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | 
						|
   double r = floor(1E10/a+.5);
 | 
						|
 | 
						|
   if (r <= 2147483647. && r >= -2147483648.)
 | 
						|
      return (png_fixed_point)r;
 | 
						|
#else
 | 
						|
   png_fixed_point res;
 | 
						|
 | 
						|
   if (png_muldiv(&res, 100000, 100000, a))
 | 
						|
      return res;
 | 
						|
#endif
 | 
						|
 | 
						|
   return 0; /* error/overflow */
 | 
						|
}
 | 
						|
 | 
						|
/* A local convenience routine. */
 | 
						|
static png_fixed_point
 | 
						|
png_product2(png_fixed_point a, png_fixed_point b)
 | 
						|
{
 | 
						|
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
 | 
						|
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | 
						|
   double r = a * 1E-5;
 | 
						|
   r *= b;
 | 
						|
   r = floor(r+.5);
 | 
						|
 | 
						|
   if (r <= 2147483647. && r >= -2147483648.)
 | 
						|
      return (png_fixed_point)r;
 | 
						|
#else
 | 
						|
   png_fixed_point res;
 | 
						|
 | 
						|
   if (png_muldiv(&res, a, b, 100000))
 | 
						|
      return res;
 | 
						|
#endif
 | 
						|
 | 
						|
   return 0; /* overflow */
 | 
						|
}
 | 
						|
 | 
						|
/* The inverse of the above. */
 | 
						|
png_fixed_point
 | 
						|
png_reciprocal2(png_fixed_point a, png_fixed_point b)
 | 
						|
{
 | 
						|
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
 | 
						|
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | 
						|
   double r = 1E15/a;
 | 
						|
   r /= b;
 | 
						|
   r = floor(r+.5);
 | 
						|
 | 
						|
   if (r <= 2147483647. && r >= -2147483648.)
 | 
						|
      return (png_fixed_point)r;
 | 
						|
#else
 | 
						|
   /* This may overflow because the range of png_fixed_point isn't symmetric,
 | 
						|
    * but this API is only used for the product of file and screen gamma so it
 | 
						|
    * doesn't matter that the smallest number it can produce is 1/21474, not
 | 
						|
    * 1/100000
 | 
						|
    */
 | 
						|
   png_fixed_point res = png_product2(a, b);
 | 
						|
 | 
						|
   if (res != 0)
 | 
						|
      return png_reciprocal(res);
 | 
						|
#endif
 | 
						|
 | 
						|
   return 0; /* overflow */
 | 
						|
}
 | 
						|
#endif /* READ_GAMMA */
 | 
						|
 | 
						|
#ifdef PNG_CHECK_cHRM_SUPPORTED
 | 
						|
/* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2,
 | 
						|
 * 2010: moved from pngset.c) */
 | 
						|
/*
 | 
						|
 *    Multiply two 32-bit numbers, V1 and V2, using 32-bit
 | 
						|
 *    arithmetic, to produce a 64-bit result in the HI/LO words.
 | 
						|
 *
 | 
						|
 *                  A B
 | 
						|
 *                x C D
 | 
						|
 *               ------
 | 
						|
 *              AD || BD
 | 
						|
 *        AC || CB || 0
 | 
						|
 *
 | 
						|
 *    where A and B are the high and low 16-bit words of V1,
 | 
						|
 *    C and D are the 16-bit words of V2, AD is the product of
 | 
						|
 *    A and D, and X || Y is (X << 16) + Y.
 | 
						|
*/
 | 
						|
 | 
						|
void /* PRIVATE */
 | 
						|
png_64bit_product (long v1, long v2, unsigned long *hi_product,
 | 
						|
    unsigned long *lo_product)
 | 
						|
{
 | 
						|
   int a, b, c, d;
 | 
						|
   long lo, hi, x, y;
 | 
						|
 | 
						|
   a = (v1 >> 16) & 0xffff;
 | 
						|
   b = v1 & 0xffff;
 | 
						|
   c = (v2 >> 16) & 0xffff;
 | 
						|
   d = v2 & 0xffff;
 | 
						|
 | 
						|
   lo = b * d;                   /* BD */
 | 
						|
   x = a * d + c * b;            /* AD + CB */
 | 
						|
   y = ((lo >> 16) & 0xffff) + x;
 | 
						|
 | 
						|
   lo = (lo & 0xffff) | ((y & 0xffff) << 16);
 | 
						|
   hi = (y >> 16) & 0xffff;
 | 
						|
 | 
						|
   hi += a * c;                  /* AC */
 | 
						|
 | 
						|
   *hi_product = (unsigned long)hi;
 | 
						|
   *lo_product = (unsigned long)lo;
 | 
						|
}
 | 
						|
#endif /* CHECK_cHRM */
 | 
						|
 | 
						|
#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
 | 
						|
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | 
						|
/* Fixed point gamma.
 | 
						|
 *
 | 
						|
 * To calculate gamma this code implements fast log() and exp() calls using only
 | 
						|
 * fixed point arithmetic.  This code has sufficient precision for either 8-bit
 | 
						|
 * or 16-bit sample values.
 | 
						|
 *
 | 
						|
 * The tables used here were calculated using simple 'bc' programs, but C double
 | 
						|
 * precision floating point arithmetic would work fine.  The programs are given
 | 
						|
 * at the head of each table.
 | 
						|
 *
 | 
						|
 * 8-bit log table
 | 
						|
 *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
 | 
						|
 *   255, so it's the base 2 logarithm of a normalized 8-bit floating point
 | 
						|
 *   mantissa.  The numbers are 32-bit fractions.
 | 
						|
 */
 | 
						|
static png_uint_32
 | 
						|
png_8bit_l2[128] =
 | 
						|
{
 | 
						|
#  ifdef PNG_DO_BC
 | 
						|
      for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; }
 | 
						|
#  else
 | 
						|
   4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
 | 
						|
   3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
 | 
						|
   3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
 | 
						|
   3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
 | 
						|
   3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
 | 
						|
   2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
 | 
						|
   2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
 | 
						|
   2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
 | 
						|
   2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
 | 
						|
   2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
 | 
						|
   1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
 | 
						|
   1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
 | 
						|
   1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
 | 
						|
   1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
 | 
						|
   1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
 | 
						|
   971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
 | 
						|
   803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
 | 
						|
   639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
 | 
						|
   479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
 | 
						|
   324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
 | 
						|
   172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
 | 
						|
   24347096U, 0U
 | 
						|
#  endif
 | 
						|
 | 
						|
#if 0
 | 
						|
   /* The following are the values for 16-bit tables - these work fine for the
 | 
						|
    * 8-bit conversions but produce very slightly larger errors in the 16-bit
 | 
						|
    * log (about 1.2 as opposed to 0.7 absolute error in the final value).  To
 | 
						|
    * use these all the shifts below must be adjusted appropriately.
 | 
						|
    */
 | 
						|
   65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
 | 
						|
   57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
 | 
						|
   50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
 | 
						|
   43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
 | 
						|
   37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
 | 
						|
   31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
 | 
						|
   25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
 | 
						|
   20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
 | 
						|
   15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
 | 
						|
   10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
 | 
						|
   6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
 | 
						|
   1119, 744, 372
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
PNG_STATIC png_int_32
 | 
						|
png_log8bit(unsigned int x)
 | 
						|
{
 | 
						|
   unsigned int lg2 = 0;
 | 
						|
   /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
 | 
						|
    * because the log is actually negate that means adding 1.  The final
 | 
						|
    * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
 | 
						|
    * input), return 7.99998 for the overflow (log 0) case - so the result is
 | 
						|
    * always at most 19 bits.
 | 
						|
    */
 | 
						|
   if ((x &= 0xff) == 0)
 | 
						|
      return 0xffffffff;
 | 
						|
 | 
						|
   if ((x & 0xf0) == 0)
 | 
						|
      lg2  = 4, x <<= 4;
 | 
						|
 | 
						|
   if ((x & 0xc0) == 0)
 | 
						|
      lg2 += 2, x <<= 2;
 | 
						|
 | 
						|
   if ((x & 0x80) == 0)
 | 
						|
      lg2 += 1, x <<= 1;
 | 
						|
 | 
						|
   /* result is at most 19 bits, so this cast is safe: */
 | 
						|
   return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
 | 
						|
}
 | 
						|
 | 
						|
/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
 | 
						|
 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
 | 
						|
 * get an approximation then multiply the approximation by a correction factor
 | 
						|
 * determined by the remaining up to 8 bits.  This requires an additional step
 | 
						|
 * in the 16-bit case.
 | 
						|
 *
 | 
						|
 * We want log2(value/65535), we have log2(v'/255), where:
 | 
						|
 *
 | 
						|
 *    value = v' * 256 + v''
 | 
						|
 *          = v' * f
 | 
						|
 *
 | 
						|
 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
 | 
						|
 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
 | 
						|
 * than 258.  The final factor also needs to correct for the fact that our 8-bit
 | 
						|
 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
 | 
						|
 *
 | 
						|
 * This gives a final formula using a calculated value 'x' which is value/v' and
 | 
						|
 * scaling by 65536 to match the above table:
 | 
						|
 *
 | 
						|
 *   log2(x/257) * 65536
 | 
						|
 *
 | 
						|
 * Since these numbers are so close to '1' we can use simple linear
 | 
						|
 * interpolation between the two end values 256/257 (result -368.61) and 258/257
 | 
						|
 * (result 367.179).  The values used below are scaled by a further 64 to give
 | 
						|
 * 16-bit precision in the interpolation:
 | 
						|
 *
 | 
						|
 * Start (256): -23591
 | 
						|
 * Zero  (257):      0
 | 
						|
 * End   (258):  23499
 | 
						|
 */
 | 
						|
PNG_STATIC png_int_32
 | 
						|
png_log16bit(png_uint_32 x)
 | 
						|
{
 | 
						|
   unsigned int lg2 = 0;
 | 
						|
 | 
						|
   /* As above, but now the input has 16 bits. */
 | 
						|
   if ((x &= 0xffff) == 0)
 | 
						|
      return 0xffffffff;
 | 
						|
 | 
						|
   if ((x & 0xff00) == 0)
 | 
						|
      lg2  = 8, x <<= 8;
 | 
						|
 | 
						|
   if ((x & 0xf000) == 0)
 | 
						|
      lg2 += 4, x <<= 4;
 | 
						|
 | 
						|
   if ((x & 0xc000) == 0)
 | 
						|
      lg2 += 2, x <<= 2;
 | 
						|
 | 
						|
   if ((x & 0x8000) == 0)
 | 
						|
      lg2 += 1, x <<= 1;
 | 
						|
 | 
						|
   /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
 | 
						|
    * value.
 | 
						|
    */
 | 
						|
   lg2 <<= 28;
 | 
						|
   lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
 | 
						|
 | 
						|
   /* Now we need to interpolate the factor, this requires a division by the top
 | 
						|
    * 8 bits.  Do this with maximum precision.
 | 
						|
    */
 | 
						|
   x = ((x << 16) + (x >> 9)) / (x >> 8);
 | 
						|
 | 
						|
   /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
 | 
						|
    * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
 | 
						|
    * 16 bits to interpolate to get the low bits of the result.  Round the
 | 
						|
    * answer.  Note that the end point values are scaled by 64 to retain overall
 | 
						|
    * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
 | 
						|
    * the overall scaling by 6-12.  Round at every step.
 | 
						|
    */
 | 
						|
   x -= 1U << 24;
 | 
						|
 | 
						|
   if (x <= 65536U) /* <= '257' */
 | 
						|
      lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
 | 
						|
 | 
						|
   else
 | 
						|
      lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
 | 
						|
 | 
						|
   /* Safe, because the result can't have more than 20 bits: */
 | 
						|
   return (png_int_32)((lg2 + 2048) >> 12);
 | 
						|
}
 | 
						|
 | 
						|
/* The 'exp()' case must invert the above, taking a 20-bit fixed point
 | 
						|
 * logarithmic value and returning a 16 or 8-bit number as appropriate.  In
 | 
						|
 * each case only the low 16 bits are relevant - the fraction - since the
 | 
						|
 * integer bits (the top 4) simply determine a shift.
 | 
						|
 *
 | 
						|
 * The worst case is the 16-bit distinction between 65535 and 65534, this
 | 
						|
 * requires perhaps spurious accuracy in the decoding of the logarithm to
 | 
						|
 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
 | 
						|
 * of getting this accuracy in practice.
 | 
						|
 *
 | 
						|
 * To deal with this the following exp() function works out the exponent of the
 | 
						|
 * frational part of the logarithm by using an accurate 32-bit value from the
 | 
						|
 * top four fractional bits then multiplying in the remaining bits.
 | 
						|
 */
 | 
						|
static png_uint_32
 | 
						|
png_32bit_exp[16] =
 | 
						|
{
 | 
						|
#  ifdef PNG_DO_BC
 | 
						|
      for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; }
 | 
						|
#  else
 | 
						|
   /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
 | 
						|
   4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
 | 
						|
   3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
 | 
						|
   2553802834U, 2445529972U, 2341847524U, 2242560872U
 | 
						|
#  endif
 | 
						|
};
 | 
						|
 | 
						|
/* Adjustment table; provided to explain the numbers in the code below. */
 | 
						|
#ifdef PNG_DO_BC
 | 
						|
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
 | 
						|
   11 44937.64284865548751208448
 | 
						|
   10 45180.98734845585101160448
 | 
						|
    9 45303.31936980687359311872
 | 
						|
    8 45364.65110595323018870784
 | 
						|
    7 45395.35850361789624614912
 | 
						|
    6 45410.72259715102037508096
 | 
						|
    5 45418.40724413220722311168
 | 
						|
    4 45422.25021786898173001728
 | 
						|
    3 45424.17186732298419044352
 | 
						|
    2 45425.13273269940811464704
 | 
						|
    1 45425.61317555035558641664
 | 
						|
    0 45425.85339951654943850496
 | 
						|
#endif
 | 
						|
 | 
						|
PNG_STATIC png_uint_32
 | 
						|
png_exp(png_fixed_point x)
 | 
						|
{
 | 
						|
   if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
 | 
						|
   {
 | 
						|
      /* Obtain a 4-bit approximation */
 | 
						|
      png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];
 | 
						|
 | 
						|
      /* Incorporate the low 12 bits - these decrease the returned value by
 | 
						|
       * multiplying by a number less than 1 if the bit is set.  The multiplier
 | 
						|
       * is determined by the above table and the shift. Notice that the values
 | 
						|
       * converge on 45426 and this is used to allow linear interpolation of the
 | 
						|
       * low bits.
 | 
						|
       */
 | 
						|
      if (x & 0x800)
 | 
						|
         e -= (((e >> 16) * 44938U) +  16U) >> 5;
 | 
						|
 | 
						|
      if (x & 0x400)
 | 
						|
         e -= (((e >> 16) * 45181U) +  32U) >> 6;
 | 
						|
 | 
						|
      if (x & 0x200)
 | 
						|
         e -= (((e >> 16) * 45303U) +  64U) >> 7;
 | 
						|
 | 
						|
      if (x & 0x100)
 | 
						|
         e -= (((e >> 16) * 45365U) + 128U) >> 8;
 | 
						|
 | 
						|
      if (x & 0x080)
 | 
						|
         e -= (((e >> 16) * 45395U) + 256U) >> 9;
 | 
						|
 | 
						|
      if (x & 0x040)
 | 
						|
         e -= (((e >> 16) * 45410U) + 512U) >> 10;
 | 
						|
 | 
						|
      /* And handle the low 6 bits in a single block. */
 | 
						|
      e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
 | 
						|
 | 
						|
      /* Handle the upper bits of x. */
 | 
						|
      e >>= x >> 16;
 | 
						|
      return e;
 | 
						|
   }
 | 
						|
 | 
						|
   /* Check for overflow */
 | 
						|
   if (x <= 0)
 | 
						|
      return png_32bit_exp[0];
 | 
						|
 | 
						|
   /* Else underflow */
 | 
						|
   return 0;
 | 
						|
}
 | 
						|
 | 
						|
PNG_STATIC png_byte
 | 
						|
png_exp8bit(png_fixed_point lg2)
 | 
						|
{
 | 
						|
   /* Get a 32-bit value: */
 | 
						|
   png_uint_32 x = png_exp(lg2);
 | 
						|
 | 
						|
   /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the
 | 
						|
    * second, rounding, step can't overflow because of the first, subtraction,
 | 
						|
    * step.
 | 
						|
    */
 | 
						|
   x -= x >> 8;
 | 
						|
   return (png_byte)((x + 0x7fffffU) >> 24);
 | 
						|
}
 | 
						|
 | 
						|
PNG_STATIC png_uint_16
 | 
						|
png_exp16bit(png_fixed_point lg2)
 | 
						|
{
 | 
						|
   /* Get a 32-bit value: */
 | 
						|
   png_uint_32 x = png_exp(lg2);
 | 
						|
 | 
						|
   /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
 | 
						|
   x -= x >> 16;
 | 
						|
   return (png_uint_16)((x + 32767U) >> 16);
 | 
						|
}
 | 
						|
#endif /* FLOATING_ARITHMETIC */
 | 
						|
 | 
						|
png_byte
 | 
						|
png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
 | 
						|
{
 | 
						|
   if (value > 0 && value < 255)
 | 
						|
   {
 | 
						|
#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | 
						|
         double r = floor(255*pow(value/255.,gamma_val*.00001)+.5);
 | 
						|
         return (png_byte)r;
 | 
						|
#     else
 | 
						|
         png_int_32 lg2 = png_log8bit(value);
 | 
						|
         png_fixed_point res;
 | 
						|
 | 
						|
         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
 | 
						|
            return png_exp8bit(res);
 | 
						|
 | 
						|
         /* Overflow. */
 | 
						|
         value = 0;
 | 
						|
#     endif
 | 
						|
   }
 | 
						|
 | 
						|
   return (png_byte)value;
 | 
						|
}
 | 
						|
 | 
						|
png_uint_16
 | 
						|
png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
 | 
						|
{
 | 
						|
   if (value > 0 && value < 65535)
 | 
						|
   {
 | 
						|
#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | 
						|
         double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5);
 | 
						|
         return (png_uint_16)r;
 | 
						|
#     else
 | 
						|
         png_int_32 lg2 = png_log16bit(value);
 | 
						|
         png_fixed_point res;
 | 
						|
 | 
						|
         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
 | 
						|
            return png_exp16bit(res);
 | 
						|
 | 
						|
         /* Overflow. */
 | 
						|
         value = 0;
 | 
						|
#     endif
 | 
						|
   }
 | 
						|
 | 
						|
   return (png_uint_16)value;
 | 
						|
}
 | 
						|
 | 
						|
/* This does the right thing based on the bit_depth field of the
 | 
						|
 * png_struct, interpreting values as 8-bit or 16-bit.  While the result
 | 
						|
 * is nominally a 16-bit value if bit depth is 8 then the result is
 | 
						|
 * 8-bit (as are the arguments.)
 | 
						|
 */
 | 
						|
png_uint_16 /* PRIVATE */
 | 
						|
png_gamma_correct(png_structp png_ptr, unsigned int value,
 | 
						|
    png_fixed_point gamma_val)
 | 
						|
{
 | 
						|
   if (png_ptr->bit_depth == 8)
 | 
						|
      return png_gamma_8bit_correct(value, gamma_val);
 | 
						|
 | 
						|
   else
 | 
						|
      return png_gamma_16bit_correct(value, gamma_val);
 | 
						|
}
 | 
						|
 | 
						|
/* This is the shared test on whether a gamma value is 'significant' - whether
 | 
						|
 * it is worth doing gamma correction.
 | 
						|
 */
 | 
						|
int /* PRIVATE */
 | 
						|
png_gamma_significant(png_fixed_point gamma_val)
 | 
						|
{
 | 
						|
   return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
 | 
						|
       gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
 | 
						|
}
 | 
						|
 | 
						|
/* Internal function to build a single 16-bit table - the table consists of
 | 
						|
 * 'num' 256-entry subtables, where 'num' is determined by 'shift' - the amount
 | 
						|
 * to shift the input values right (or 16-number_of_signifiant_bits).
 | 
						|
 *
 | 
						|
 * The caller is responsible for ensuring that the table gets cleaned up on
 | 
						|
 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
 | 
						|
 * should be somewhere that will be cleaned.
 | 
						|
 */
 | 
						|
static void
 | 
						|
png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable,
 | 
						|
   PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
 | 
						|
{
 | 
						|
   /* Various values derived from 'shift': */
 | 
						|
   PNG_CONST unsigned int num = 1U << (8U - shift);
 | 
						|
   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
 | 
						|
   PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
 | 
						|
   unsigned int i;
 | 
						|
 | 
						|
   png_uint_16pp table = *ptable =
 | 
						|
       (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
 | 
						|
 | 
						|
   for (i = 0; i < num; i++)
 | 
						|
   {
 | 
						|
      png_uint_16p sub_table = table[i] =
 | 
						|
          (png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16));
 | 
						|
 | 
						|
      /* The 'threshold' test is repeated here because it can arise for one of
 | 
						|
       * the 16-bit tables even if the others don't hit it.
 | 
						|
       */
 | 
						|
      if (png_gamma_significant(gamma_val))
 | 
						|
      {
 | 
						|
         /* The old code would overflow at the end and this would cause the
 | 
						|
          * 'pow' function to return a result >1, resulting in an
 | 
						|
          * arithmetic error.  This code follows the spec exactly; ig is
 | 
						|
          * the recovered input sample, it always has 8-16 bits.
 | 
						|
          *
 | 
						|
          * We want input * 65535/max, rounded, the arithmetic fits in 32
 | 
						|
          * bits (unsigned) so long as max <= 32767.
 | 
						|
          */
 | 
						|
         unsigned int j;
 | 
						|
         for (j = 0; j < 256; j++)
 | 
						|
         {
 | 
						|
            png_uint_32 ig = (j << (8-shift)) + i;
 | 
						|
#           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | 
						|
               /* Inline the 'max' scaling operation: */
 | 
						|
               double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5);
 | 
						|
               sub_table[j] = (png_uint_16)d;
 | 
						|
#           else
 | 
						|
               if (shift)
 | 
						|
                  ig = (ig * 65535U + max_by_2)/max;
 | 
						|
 | 
						|
               sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
 | 
						|
#           endif
 | 
						|
         }
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
         /* We must still build a table, but do it the fast way. */
 | 
						|
         unsigned int j;
 | 
						|
 | 
						|
         for (j = 0; j < 256; j++)
 | 
						|
         {
 | 
						|
            png_uint_32 ig = (j << (8-shift)) + i;
 | 
						|
 | 
						|
            if (shift)
 | 
						|
               ig = (ig * 65535U + max_by_2)/max;
 | 
						|
 | 
						|
            sub_table[j] = (png_uint_16)ig;
 | 
						|
         }
 | 
						|
      }
 | 
						|
   }
 | 
						|
}
 | 
						|
 | 
						|
/* NOTE: this function expects the *inverse* of the overall gamma transformation
 | 
						|
 * required.
 | 
						|
 */
 | 
						|
static void
 | 
						|
png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
 | 
						|
   PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
 | 
						|
{
 | 
						|
   PNG_CONST unsigned int num = 1U << (8U - shift);
 | 
						|
   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
 | 
						|
   unsigned int i;
 | 
						|
   png_uint_32 last;
 | 
						|
 | 
						|
   png_uint_16pp table = *ptable =
 | 
						|
       (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
 | 
						|
 | 
						|
   /* 'num' is the number of tables and also the number of low bits of the
 | 
						|
    * input 16-bit value used to select a table.  Each table is itself indexed
 | 
						|
    * by the high 8 bits of the value.
 | 
						|
    */
 | 
						|
   for (i = 0; i < num; i++)
 | 
						|
      table[i] = (png_uint_16p)png_malloc(png_ptr,
 | 
						|
          256 * png_sizeof(png_uint_16));
 | 
						|
 | 
						|
   /* 'gamma_val' is set to the reciprocal of the value calculated above, so
 | 
						|
    * pow(out,g) is an *input* value.  'last' is the last input value set.
 | 
						|
    *
 | 
						|
    * In the loop 'i' is used to find output values.  Since the output is
 | 
						|
    * 8-bit there are only 256 possible values.  The tables are set up to
 | 
						|
    * select the closest possible output value for each input by finding
 | 
						|
    * the input value at the boundary between each pair of output values
 | 
						|
    * and filling the table up to that boundary with the lower output
 | 
						|
    * value.
 | 
						|
    *
 | 
						|
    * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9-bit
 | 
						|
    * values the code below uses a 16-bit value in i; the values start at
 | 
						|
    * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
 | 
						|
    * entries are filled with 255).  Start i at 128 and fill all 'last'
 | 
						|
    * table entries <= 'max'
 | 
						|
    */
 | 
						|
   last = 0;
 | 
						|
   for (i = 0; i < 255; ++i) /* 8-bit output value */
 | 
						|
   {
 | 
						|
      /* Find the corresponding maximum input value */
 | 
						|
      png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
 | 
						|
 | 
						|
      /* Find the boundary value in 16 bits: */
 | 
						|
      png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
 | 
						|
 | 
						|
      /* Adjust (round) to (16-shift) bits: */
 | 
						|
      bound = (bound * max + 32768U)/65535U + 1U;
 | 
						|
 | 
						|
      while (last < bound)
 | 
						|
      {
 | 
						|
         table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
 | 
						|
         last++;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   /* And fill in the final entries. */
 | 
						|
   while (last < (num << 8))
 | 
						|
   {
 | 
						|
      table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
 | 
						|
      last++;
 | 
						|
   }
 | 
						|
}
 | 
						|
 | 
						|
/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
 | 
						|
 * typically much faster).  Note that libpng currently does no sBIT processing
 | 
						|
 * (apparently contrary to the spec) so a 256-entry table is always generated.
 | 
						|
 */
 | 
						|
static void
 | 
						|
png_build_8bit_table(png_structp png_ptr, png_bytepp ptable,
 | 
						|
   PNG_CONST png_fixed_point gamma_val)
 | 
						|
{
 | 
						|
   unsigned int i;
 | 
						|
   png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
 | 
						|
 | 
						|
   if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++)
 | 
						|
      table[i] = png_gamma_8bit_correct(i, gamma_val);
 | 
						|
 | 
						|
   else for (i=0; i<256; ++i)
 | 
						|
      table[i] = (png_byte)i;
 | 
						|
}
 | 
						|
 | 
						|
/* Used from png_read_destroy and below to release the memory used by the gamma
 | 
						|
 * tables.
 | 
						|
 */
 | 
						|
void /* PRIVATE */
 | 
						|
png_destroy_gamma_table(png_structp png_ptr)
 | 
						|
{
 | 
						|
   png_free(png_ptr, png_ptr->gamma_table);
 | 
						|
   png_ptr->gamma_table = NULL;
 | 
						|
 | 
						|
   if (png_ptr->gamma_16_table != NULL)
 | 
						|
   {
 | 
						|
      int i;
 | 
						|
      int istop = (1 << (8 - png_ptr->gamma_shift));
 | 
						|
      for (i = 0; i < istop; i++)
 | 
						|
      {
 | 
						|
         png_free(png_ptr, png_ptr->gamma_16_table[i]);
 | 
						|
      }
 | 
						|
   png_free(png_ptr, png_ptr->gamma_16_table);
 | 
						|
   png_ptr->gamma_16_table = NULL;
 | 
						|
   }
 | 
						|
 | 
						|
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
 | 
						|
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
 | 
						|
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
 | 
						|
   png_free(png_ptr, png_ptr->gamma_from_1);
 | 
						|
   png_ptr->gamma_from_1 = NULL;
 | 
						|
   png_free(png_ptr, png_ptr->gamma_to_1);
 | 
						|
   png_ptr->gamma_to_1 = NULL;
 | 
						|
 | 
						|
   if (png_ptr->gamma_16_from_1 != NULL)
 | 
						|
   {
 | 
						|
      int i;
 | 
						|
      int istop = (1 << (8 - png_ptr->gamma_shift));
 | 
						|
      for (i = 0; i < istop; i++)
 | 
						|
      {
 | 
						|
         png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
 | 
						|
      }
 | 
						|
   png_free(png_ptr, png_ptr->gamma_16_from_1);
 | 
						|
   png_ptr->gamma_16_from_1 = NULL;
 | 
						|
   }
 | 
						|
   if (png_ptr->gamma_16_to_1 != NULL)
 | 
						|
   {
 | 
						|
      int i;
 | 
						|
      int istop = (1 << (8 - png_ptr->gamma_shift));
 | 
						|
      for (i = 0; i < istop; i++)
 | 
						|
      {
 | 
						|
         png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
 | 
						|
      }
 | 
						|
   png_free(png_ptr, png_ptr->gamma_16_to_1);
 | 
						|
   png_ptr->gamma_16_to_1 = NULL;
 | 
						|
   }
 | 
						|
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
 | 
						|
}
 | 
						|
 | 
						|
/* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
 | 
						|
 * tables, we don't make a full table if we are reducing to 8-bit in
 | 
						|
 * the future.  Note also how the gamma_16 tables are segmented so that
 | 
						|
 * we don't need to allocate > 64K chunks for a full 16-bit table.
 | 
						|
 */
 | 
						|
void /* PRIVATE */
 | 
						|
png_build_gamma_table(png_structp png_ptr, int bit_depth)
 | 
						|
{
 | 
						|
  png_debug(1, "in png_build_gamma_table");
 | 
						|
 | 
						|
  /* Remove any existing table; this copes with multiple calls to
 | 
						|
   * png_read_update_info.  The warning is because building the gamma tables
 | 
						|
   * multiple times is a performance hit - it's harmless but the ability to call
 | 
						|
   * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible
 | 
						|
   * to warn if the app introduces such a hit.
 | 
						|
   */
 | 
						|
  if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
 | 
						|
  {
 | 
						|
    png_warning(png_ptr, "gamma table being rebuilt");
 | 
						|
    png_destroy_gamma_table(png_ptr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (bit_depth <= 8)
 | 
						|
  {
 | 
						|
     png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
 | 
						|
         png_ptr->screen_gamma > 0 ?  png_reciprocal2(png_ptr->gamma,
 | 
						|
         png_ptr->screen_gamma) : PNG_FP_1);
 | 
						|
 | 
						|
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
 | 
						|
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
 | 
						|
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
 | 
						|
     if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
 | 
						|
     {
 | 
						|
        png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
 | 
						|
            png_reciprocal(png_ptr->gamma));
 | 
						|
 | 
						|
        png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
 | 
						|
            png_ptr->screen_gamma > 0 ?  png_reciprocal(png_ptr->screen_gamma) :
 | 
						|
            png_ptr->gamma/* Probably doing rgb_to_gray */);
 | 
						|
     }
 | 
						|
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
     png_byte shift, sig_bit;
 | 
						|
 | 
						|
     if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
 | 
						|
     {
 | 
						|
        sig_bit = png_ptr->sig_bit.red;
 | 
						|
 | 
						|
        if (png_ptr->sig_bit.green > sig_bit)
 | 
						|
           sig_bit = png_ptr->sig_bit.green;
 | 
						|
 | 
						|
        if (png_ptr->sig_bit.blue > sig_bit)
 | 
						|
           sig_bit = png_ptr->sig_bit.blue;
 | 
						|
     }
 | 
						|
     else
 | 
						|
        sig_bit = png_ptr->sig_bit.gray;
 | 
						|
 | 
						|
     /* 16-bit gamma code uses this equation:
 | 
						|
      *
 | 
						|
      *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
 | 
						|
      *
 | 
						|
      * Where 'iv' is the input color value and 'ov' is the output value -
 | 
						|
      * pow(iv, gamma).
 | 
						|
      *
 | 
						|
      * Thus the gamma table consists of up to 256 256-entry tables.  The table
 | 
						|
      * is selected by the (8-gamma_shift) most significant of the low 8 bits of
 | 
						|
      * the color value then indexed by the upper 8 bits:
 | 
						|
      *
 | 
						|
      *   table[low bits][high 8 bits]
 | 
						|
      *
 | 
						|
      * So the table 'n' corresponds to all those 'iv' of:
 | 
						|
      *
 | 
						|
      *   <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
 | 
						|
      *
 | 
						|
      */
 | 
						|
     if (sig_bit > 0 && sig_bit < 16U)
 | 
						|
        shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */
 | 
						|
 | 
						|
     else
 | 
						|
        shift = 0; /* keep all 16 bits */
 | 
						|
 | 
						|
     if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
 | 
						|
     {
 | 
						|
        /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
 | 
						|
         * the significant bits in the *input* when the output will
 | 
						|
         * eventually be 8 bits.  By default it is 11.
 | 
						|
         */
 | 
						|
        if (shift < (16U - PNG_MAX_GAMMA_8))
 | 
						|
           shift = (16U - PNG_MAX_GAMMA_8);
 | 
						|
     }
 | 
						|
 | 
						|
     if (shift > 8U)
 | 
						|
        shift = 8U; /* Guarantees at least one table! */
 | 
						|
 | 
						|
     png_ptr->gamma_shift = shift;
 | 
						|
 | 
						|
#ifdef PNG_16BIT_SUPPORTED
 | 
						|
     /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
 | 
						|
      * PNG_COMPOSE).  This effectively smashed the background calculation for
 | 
						|
      * 16-bit output because the 8-bit table assumes the result will be reduced
 | 
						|
      * to 8 bits.
 | 
						|
      */
 | 
						|
     if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
 | 
						|
#endif
 | 
						|
         png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
 | 
						|
         png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma,
 | 
						|
         png_ptr->screen_gamma) : PNG_FP_1);
 | 
						|
 | 
						|
#ifdef PNG_16BIT_SUPPORTED
 | 
						|
     else
 | 
						|
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
 | 
						|
         png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
 | 
						|
         png_ptr->screen_gamma) : PNG_FP_1);
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
 | 
						|
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
 | 
						|
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
 | 
						|
     if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
 | 
						|
     {
 | 
						|
        png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
 | 
						|
            png_reciprocal(png_ptr->gamma));
 | 
						|
 | 
						|
        /* Notice that the '16 from 1' table should be full precision, however
 | 
						|
         * the lookup on this table still uses gamma_shift, so it can't be.
 | 
						|
         * TODO: fix this.
 | 
						|
         */
 | 
						|
        png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
 | 
						|
            png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
 | 
						|
            png_ptr->gamma/* Probably doing rgb_to_gray */);
 | 
						|
     }
 | 
						|
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif /* READ_GAMMA */
 | 
						|
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 |