mirror of
				https://git.code.sf.net/p/libpng/code.git
				synced 2025-07-10 18:04:09 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			2079 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2079 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* pngwutil.c - utilities to write a PNG file
 | |
|  *
 | |
|  * libpng 1.0.4f - October 12, 1999
 | |
|  * For conditions of distribution and use, see copyright notice in png.h
 | |
|  * Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.
 | |
|  * Copyright (c) 1996, 1997 Andreas Dilger
 | |
|  * Copyright (c) 1998, 1999 Glenn Randers-Pehrson
 | |
|  */
 | |
| 
 | |
| #define PNG_INTERNAL
 | |
| #include "png.h"
 | |
| 
 | |
| /* Place a 32-bit number into a buffer in PNG byte order.  We work
 | |
|  * with unsigned numbers for convenience, although one supported
 | |
|  * ancillary chunk uses signed (two's complement) numbers.
 | |
|  */
 | |
| void
 | |
| png_save_uint_32(png_bytep buf, png_uint_32 i)
 | |
| {
 | |
|    buf[0] = (png_byte)((i >> 24) & 0xff);
 | |
|    buf[1] = (png_byte)((i >> 16) & 0xff);
 | |
|    buf[2] = (png_byte)((i >> 8) & 0xff);
 | |
|    buf[3] = (png_byte)(i & 0xff);
 | |
| }
 | |
| 
 | |
| #if defined(PNG_WRITE_pCAL_SUPPORTED)
 | |
| /* The png_save_int_32 function assumes integers are stored in two's
 | |
|  * complement format.  If this isn't the case, then this routine needs to
 | |
|  * be modified to write data in two's complement format.
 | |
|  */
 | |
| void
 | |
| png_save_int_32(png_bytep buf, png_int_32 i)
 | |
| {
 | |
|    buf[0] = (png_byte)((i >> 24) & 0xff);
 | |
|    buf[1] = (png_byte)((i >> 16) & 0xff);
 | |
|    buf[2] = (png_byte)((i >> 8) & 0xff);
 | |
|    buf[3] = (png_byte)(i & 0xff);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Place a 16-bit number into a buffer in PNG byte order.
 | |
|  * The parameter is declared unsigned int, not png_uint_16,
 | |
|  * just to avoid potential problems on pre-ANSI C compilers.
 | |
|  */
 | |
| void
 | |
| png_save_uint_16(png_bytep buf, unsigned int i)
 | |
| {
 | |
|    buf[0] = (png_byte)((i >> 8) & 0xff);
 | |
|    buf[1] = (png_byte)(i & 0xff);
 | |
| }
 | |
| 
 | |
| /* Write a PNG chunk all at once.  The type is an array of ASCII characters
 | |
|  * representing the chunk name.  The array must be at least 4 bytes in
 | |
|  * length, and does not need to be null terminated.  To be safe, pass the
 | |
|  * pre-defined chunk names here, and if you need a new one, define it
 | |
|  * where the others are defined.  The length is the length of the data.
 | |
|  * All the data must be present.  If that is not possible, use the
 | |
|  * png_write_chunk_start(), png_write_chunk_data(), and png_write_chunk_end()
 | |
|  * functions instead.
 | |
|  */
 | |
| void
 | |
| png_write_chunk(png_structp png_ptr, png_bytep chunk_name,
 | |
|    png_bytep data, png_size_t length)
 | |
| {
 | |
|    png_write_chunk_start(png_ptr, chunk_name, (png_uint_32)length);
 | |
|    png_write_chunk_data(png_ptr, data, length);
 | |
|    png_write_chunk_end(png_ptr);
 | |
| }
 | |
| 
 | |
| /* Write the start of a PNG chunk.  The type is the chunk type.
 | |
|  * The total_length is the sum of the lengths of all the data you will be
 | |
|  * passing in png_write_chunk_data().
 | |
|  */
 | |
| void
 | |
| png_write_chunk_start(png_structp png_ptr, png_bytep chunk_name,
 | |
|    png_uint_32 length)
 | |
| {
 | |
|    png_byte buf[4];
 | |
|    png_debug2(0, "Writing %s chunk (%d bytes)\n", chunk_name, length);
 | |
| 
 | |
|    /* write the length */
 | |
|    png_save_uint_32(buf, length);
 | |
|    png_write_data(png_ptr, buf, (png_size_t)4);
 | |
| 
 | |
|    /* write the chunk name */
 | |
|    png_write_data(png_ptr, chunk_name, (png_size_t)4);
 | |
|    /* reset the crc and run it over the chunk name */
 | |
|    png_reset_crc(png_ptr);
 | |
|    png_calculate_crc(png_ptr, chunk_name, (png_size_t)4);
 | |
| }
 | |
| 
 | |
| /* Write the data of a PNG chunk started with png_write_chunk_start().
 | |
|  * Note that multiple calls to this function are allowed, and that the
 | |
|  * sum of the lengths from these calls *must* add up to the total_length
 | |
|  * given to png_write_chunk_start().
 | |
|  */
 | |
| void
 | |
| png_write_chunk_data(png_structp png_ptr, png_bytep data, png_size_t length)
 | |
| {
 | |
|    /* write the data, and run the CRC over it */
 | |
|    if (data != NULL && length > 0)
 | |
|    {
 | |
|       png_calculate_crc(png_ptr, data, length);
 | |
|       png_write_data(png_ptr, data, length);
 | |
|    }
 | |
| }
 | |
| 
 | |
| /* Finish a chunk started with png_write_chunk_start(). */
 | |
| void
 | |
| png_write_chunk_end(png_structp png_ptr)
 | |
| {
 | |
|    png_byte buf[4];
 | |
| 
 | |
|    /* write the crc */
 | |
|    png_save_uint_32(buf, png_ptr->crc);
 | |
| 
 | |
|    png_write_data(png_ptr, buf, (png_size_t)4);
 | |
| }
 | |
| 
 | |
| /* Simple function to write the signature.  If we have already written
 | |
|  * the magic bytes of the signature, or more likely, the PNG stream is
 | |
|  * being embedded into another stream and doesn't need its own signature,
 | |
|  * we should call png_set_sig_bytes() to tell libpng how many of the
 | |
|  * bytes have already been written.
 | |
|  */
 | |
| void
 | |
| png_write_sig(png_structp png_ptr)
 | |
| {
 | |
|    /* write the rest of the 8 byte signature */
 | |
|    png_write_data(png_ptr, &png_sig[png_ptr->sig_bytes],
 | |
|       (png_size_t)8 - png_ptr->sig_bytes);
 | |
| }
 | |
| 
 | |
| /* Write the IHDR chunk, and update the png_struct with the necessary
 | |
|  * information.  Note that the rest of this code depends upon this
 | |
|  * information being correct.
 | |
|  */
 | |
| void
 | |
| png_write_IHDR(png_structp png_ptr, png_uint_32 width, png_uint_32 height,
 | |
|    int bit_depth, int color_type, int compression_type, int filter_type,
 | |
|    int interlace_type)
 | |
| {
 | |
|    png_byte buf[13]; /* buffer to store the IHDR info */
 | |
| 
 | |
|    png_debug(1, "in png_write_IHDR\n");
 | |
|    /* Check that we have valid input data from the application info */
 | |
|    switch (color_type)
 | |
|    {
 | |
|       case PNG_COLOR_TYPE_GRAY:
 | |
|          switch (bit_depth)
 | |
|          {
 | |
|             case 1:
 | |
|             case 2:
 | |
|             case 4:
 | |
|             case 8:
 | |
|             case 16: png_ptr->channels = 1; break;
 | |
|             default: png_error(png_ptr,"Invalid bit depth for grayscale image");
 | |
|          }
 | |
|          break;
 | |
|       case PNG_COLOR_TYPE_RGB:
 | |
|          if (bit_depth != 8 && bit_depth != 16)
 | |
|             png_error(png_ptr, "Invalid bit depth for RGB image");
 | |
|          png_ptr->channels = 3;
 | |
|          break;
 | |
|       case PNG_COLOR_TYPE_PALETTE:
 | |
|          switch (bit_depth)
 | |
|          {
 | |
|             case 1:
 | |
|             case 2:
 | |
|             case 4:
 | |
|             case 8: png_ptr->channels = 1; break;
 | |
|             default: png_error(png_ptr, "Invalid bit depth for paletted image");
 | |
|          }
 | |
|          break;
 | |
|       case PNG_COLOR_TYPE_GRAY_ALPHA:
 | |
|          if (bit_depth != 8 && bit_depth != 16)
 | |
|             png_error(png_ptr, "Invalid bit depth for grayscale+alpha image");
 | |
|          png_ptr->channels = 2;
 | |
|          break;
 | |
|       case PNG_COLOR_TYPE_RGB_ALPHA:
 | |
|          if (bit_depth != 8 && bit_depth != 16)
 | |
|             png_error(png_ptr, "Invalid bit depth for RGBA image");
 | |
|          png_ptr->channels = 4;
 | |
|          break;
 | |
|       default:
 | |
|          png_error(png_ptr, "Invalid image color type specified");
 | |
|    }
 | |
| 
 | |
|    if (compression_type != PNG_COMPRESSION_TYPE_BASE)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid compression type specified");
 | |
|       compression_type = PNG_COMPRESSION_TYPE_BASE;
 | |
|    }
 | |
| 
 | |
|    if (filter_type != PNG_FILTER_TYPE_BASE)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid filter type specified");
 | |
|       filter_type = PNG_FILTER_TYPE_BASE;
 | |
|    }
 | |
| 
 | |
| #ifdef PNG_WRITE_INTERLACING_SUPPORTED
 | |
|    if (interlace_type != PNG_INTERLACE_NONE &&
 | |
|       interlace_type != PNG_INTERLACE_ADAM7)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid interlace type specified");
 | |
|       interlace_type = PNG_INTERLACE_ADAM7;
 | |
|    }
 | |
| #else
 | |
|    interlace_type=PNG_INTERLACE_NONE;
 | |
| #endif
 | |
| 
 | |
|    /* save off the relevent information */
 | |
|    png_ptr->bit_depth = (png_byte)bit_depth;
 | |
|    png_ptr->color_type = (png_byte)color_type;
 | |
|    png_ptr->interlaced = (png_byte)interlace_type;
 | |
|    png_ptr->width = width;
 | |
|    png_ptr->height = height;
 | |
| 
 | |
|    png_ptr->pixel_depth = (png_byte)(bit_depth * png_ptr->channels);
 | |
|    png_ptr->rowbytes = ((width * (png_size_t)png_ptr->pixel_depth + 7) >> 3);
 | |
|    /* set the usr info, so any transformations can modify it */
 | |
|    png_ptr->usr_width = png_ptr->width;
 | |
|    png_ptr->usr_bit_depth = png_ptr->bit_depth;
 | |
|    png_ptr->usr_channels = png_ptr->channels;
 | |
| 
 | |
|    /* pack the header information into the buffer */
 | |
|    png_save_uint_32(buf, width);
 | |
|    png_save_uint_32(buf + 4, height);
 | |
|    buf[8] = (png_byte)bit_depth;
 | |
|    buf[9] = (png_byte)color_type;
 | |
|    buf[10] = (png_byte)compression_type;
 | |
|    buf[11] = (png_byte)filter_type;
 | |
|    buf[12] = (png_byte)interlace_type;
 | |
| 
 | |
|    /* write the chunk */
 | |
|    png_write_chunk(png_ptr, png_IHDR, buf, (png_size_t)13);
 | |
| 
 | |
|    /* initialize zlib with PNG info */
 | |
|    png_ptr->zstream.zalloc = png_zalloc;
 | |
|    png_ptr->zstream.zfree = png_zfree;
 | |
|    png_ptr->zstream.opaque = (voidpf)png_ptr;
 | |
|    if (!(png_ptr->do_filter))
 | |
|    {
 | |
|       if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE ||
 | |
|          png_ptr->bit_depth < 8)
 | |
|          png_ptr->do_filter = PNG_FILTER_NONE;
 | |
|       else
 | |
|          png_ptr->do_filter = PNG_ALL_FILTERS;
 | |
|    }
 | |
|    if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_STRATEGY))
 | |
|    {
 | |
|       if (png_ptr->do_filter != PNG_FILTER_NONE)
 | |
|          png_ptr->zlib_strategy = Z_FILTERED;
 | |
|       else
 | |
|          png_ptr->zlib_strategy = Z_DEFAULT_STRATEGY;
 | |
|    }
 | |
|    if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_LEVEL))
 | |
|       png_ptr->zlib_level = Z_DEFAULT_COMPRESSION;
 | |
|    if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL))
 | |
|       png_ptr->zlib_mem_level = 8;
 | |
|    if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS))
 | |
|       png_ptr->zlib_window_bits = 15;
 | |
|    if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_METHOD))
 | |
|       png_ptr->zlib_method = 8;
 | |
|    deflateInit2(&png_ptr->zstream, png_ptr->zlib_level,
 | |
|       png_ptr->zlib_method, png_ptr->zlib_window_bits,
 | |
|       png_ptr->zlib_mem_level, png_ptr->zlib_strategy);
 | |
|    png_ptr->zstream.next_out = png_ptr->zbuf;
 | |
|    png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 | |
| 
 | |
|    png_ptr->mode = PNG_HAVE_IHDR;
 | |
| }
 | |
| 
 | |
| /* write the palette.  We are careful not to trust png_color to be in the
 | |
|  * correct order for PNG, so people can redefine it to any convenient
 | |
|  * structure.
 | |
|  */
 | |
| void
 | |
| png_write_PLTE(png_structp png_ptr, png_colorp palette, png_uint_32 num_pal)
 | |
| {
 | |
|    png_uint_32 i;
 | |
|    png_colorp pal_ptr;
 | |
|    png_byte buf[3];
 | |
| 
 | |
|    png_debug(1, "in png_write_PLTE\n");
 | |
|    if ((
 | |
| #ifdef PNG_WRITE_EMPTY_PLTE_SUPPORTED
 | |
|         !png_ptr->empty_plte_permitted &&
 | |
| #endif
 | |
|         num_pal == 0) || num_pal > 256)
 | |
|      {
 | |
|        if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
 | |
|          {
 | |
|            png_error(png_ptr, "Invalid number of colors in palette");
 | |
|          }
 | |
|        else
 | |
|          {
 | |
|            png_warning(png_ptr, "Invalid number of colors in palette");
 | |
|            return;
 | |
|          }
 | |
|    }
 | |
| 
 | |
|    png_ptr->num_palette = (png_uint_16)num_pal;
 | |
|    png_debug1(3, "num_palette = %d\n", png_ptr->num_palette);
 | |
| 
 | |
|    png_write_chunk_start(png_ptr, png_PLTE, num_pal * 3);
 | |
|    for (i = 0, pal_ptr = palette; i < num_pal; i++, pal_ptr++)
 | |
|    {
 | |
|       buf[0] = pal_ptr->red;
 | |
|       buf[1] = pal_ptr->green;
 | |
|       buf[2] = pal_ptr->blue;
 | |
|       png_write_chunk_data(png_ptr, buf, (png_size_t)3);
 | |
|    }
 | |
|    png_write_chunk_end(png_ptr);
 | |
|    png_ptr->mode |= PNG_HAVE_PLTE;
 | |
| }
 | |
| 
 | |
| /* write an IDAT chunk */
 | |
| void
 | |
| png_write_IDAT(png_structp png_ptr, png_bytep data, png_size_t length)
 | |
| {
 | |
|    png_debug(1, "in png_write_IDAT\n");
 | |
|    png_write_chunk(png_ptr, png_IDAT, data, length);
 | |
|    png_ptr->mode |= PNG_HAVE_IDAT;
 | |
| }
 | |
| 
 | |
| /* write an IEND chunk */
 | |
| void
 | |
| png_write_IEND(png_structp png_ptr)
 | |
| {
 | |
|    png_debug(1, "in png_write_IEND\n");
 | |
|    png_write_chunk(png_ptr, png_IEND, NULL, (png_size_t)0);
 | |
|    png_ptr->mode |= PNG_HAVE_IEND;
 | |
| }
 | |
| 
 | |
| #if defined(PNG_WRITE_gAMA_SUPPORTED)
 | |
| /* write a gAMA chunk */
 | |
| void
 | |
| png_write_gAMA(png_structp png_ptr, double file_gamma)
 | |
| {
 | |
|    png_uint_32 igamma;
 | |
|    png_byte buf[4];
 | |
| 
 | |
|    png_debug(1, "in png_write_gAMA\n");
 | |
|    /* file_gamma is saved in 1/1000000ths */
 | |
|    igamma = (png_uint_32)(file_gamma * 100000.0 + 0.5);
 | |
|    png_save_uint_32(buf, igamma);
 | |
|    png_write_chunk(png_ptr, png_gAMA, buf, (png_size_t)4);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_sRGB_SUPPORTED)
 | |
| /* write a sRGB chunk */
 | |
| void
 | |
| png_write_sRGB(png_structp png_ptr, int srgb_intent)
 | |
| {
 | |
|    png_byte buf[1];
 | |
| 
 | |
|    png_debug(1, "in png_write_sRGB\n");
 | |
|    if(srgb_intent >= PNG_sRGB_INTENT_LAST)
 | |
|          png_warning(png_ptr,
 | |
|             "Invalid sRGB rendering intent specified");
 | |
|    buf[0]=(png_byte)srgb_intent;
 | |
|    png_write_chunk(png_ptr, png_sRGB, buf, (png_size_t)1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_sBIT_SUPPORTED)
 | |
| /* write the sBIT chunk */
 | |
| void
 | |
| png_write_sBIT(png_structp png_ptr, png_color_8p sbit, int color_type)
 | |
| {
 | |
|    png_byte buf[4];
 | |
|    png_size_t size;
 | |
| 
 | |
|    png_debug(1, "in png_write_sBIT\n");
 | |
|    /* make sure we don't depend upon the order of PNG_COLOR_8 */
 | |
|    if (color_type & PNG_COLOR_MASK_COLOR)
 | |
|    {
 | |
|       png_byte maxbits;
 | |
| 
 | |
|       maxbits = (png_byte)(color_type==PNG_COLOR_TYPE_PALETTE ? 8 :
 | |
|                 png_ptr->usr_bit_depth);
 | |
|       if (sbit->red == 0 || sbit->red > maxbits ||
 | |
|           sbit->green == 0 || sbit->green > maxbits ||
 | |
|           sbit->blue == 0 || sbit->blue > maxbits)
 | |
|       {
 | |
|          png_warning(png_ptr, "Invalid sBIT depth specified");
 | |
|          return;
 | |
|       }
 | |
|       buf[0] = sbit->red;
 | |
|       buf[1] = sbit->green;
 | |
|       buf[2] = sbit->blue;
 | |
|       size = 3;
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       if (sbit->gray == 0 || sbit->gray > png_ptr->usr_bit_depth)
 | |
|       {
 | |
|          png_warning(png_ptr, "Invalid sBIT depth specified");
 | |
|          return;
 | |
|       }
 | |
|       buf[0] = sbit->gray;
 | |
|       size = 1;
 | |
|    }
 | |
| 
 | |
|    if (color_type & PNG_COLOR_MASK_ALPHA)
 | |
|    {
 | |
|       if (sbit->alpha == 0 || sbit->alpha > png_ptr->usr_bit_depth)
 | |
|       {
 | |
|          png_warning(png_ptr, "Invalid sBIT depth specified");
 | |
|          return;
 | |
|       }
 | |
|       buf[size++] = sbit->alpha;
 | |
|    }
 | |
| 
 | |
|    png_write_chunk(png_ptr, png_sBIT, buf, size);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_cHRM_SUPPORTED)
 | |
| /* write the cHRM chunk */
 | |
| void
 | |
| png_write_cHRM(png_structp png_ptr, double white_x, double white_y,
 | |
|    double red_x, double red_y, double green_x, double green_y,
 | |
|    double blue_x, double blue_y)
 | |
| {
 | |
|    png_uint_32 itemp;
 | |
|    png_byte buf[32];
 | |
| 
 | |
|    png_debug(1, "in png_write_cHRM\n");
 | |
|    /* each value is saved int 1/1000000ths */
 | |
|    if (white_x < 0 || white_x > 0.8 || white_y < 0 || white_y > 0.8 ||
 | |
|        white_x + white_y > 1.0)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid cHRM white point specified");
 | |
|       return;
 | |
|    }
 | |
|    itemp = (png_uint_32)(white_x * 100000.0 + 0.5);
 | |
|    png_save_uint_32(buf, itemp);
 | |
|    itemp = (png_uint_32)(white_y * 100000.0 + 0.5);
 | |
|    png_save_uint_32(buf + 4, itemp);
 | |
| 
 | |
|    if (red_x < 0 || red_x > 0.8 || red_y < 0 || red_y > 0.8 ||
 | |
|        red_x + red_y > 1.0)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid cHRM red point specified");
 | |
|       return;
 | |
|    }
 | |
|    itemp = (png_uint_32)(red_x * 100000.0 + 0.5);
 | |
|    png_save_uint_32(buf + 8, itemp);
 | |
|    itemp = (png_uint_32)(red_y * 100000.0 + 0.5);
 | |
|    png_save_uint_32(buf + 12, itemp);
 | |
| 
 | |
|    if (green_x < 0 || green_x > 0.8 || green_y < 0 || green_y > 0.8 ||
 | |
|        green_x + green_y > 1.0)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid cHRM green point specified");
 | |
|       return;
 | |
|    }
 | |
|    itemp = (png_uint_32)(green_x * 100000.0 + 0.5);
 | |
|    png_save_uint_32(buf + 16, itemp);
 | |
|    itemp = (png_uint_32)(green_y * 100000.0 + 0.5);
 | |
|    png_save_uint_32(buf + 20, itemp);
 | |
| 
 | |
|    if (blue_x < 0 || blue_x > 0.8 || blue_y < 0 || blue_y > 0.8 ||
 | |
|        blue_x + blue_y > 1.0)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid cHRM blue point specified");
 | |
|       return;
 | |
|    }
 | |
|    itemp = (png_uint_32)(blue_x * 100000.0 + 0.5);
 | |
|    png_save_uint_32(buf + 24, itemp);
 | |
|    itemp = (png_uint_32)(blue_y * 100000.0 + 0.5);
 | |
|    png_save_uint_32(buf + 28, itemp);
 | |
| 
 | |
|    png_write_chunk(png_ptr, png_cHRM, buf, (png_size_t)32);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_tRNS_SUPPORTED)
 | |
| /* write the tRNS chunk */
 | |
| void
 | |
| png_write_tRNS(png_structp png_ptr, png_bytep trans, png_color_16p tran,
 | |
|    int num_trans, int color_type)
 | |
| {
 | |
|    png_byte buf[6];
 | |
| 
 | |
|    png_debug(1, "in png_write_tRNS\n");
 | |
|    if (color_type == PNG_COLOR_TYPE_PALETTE)
 | |
|    {
 | |
|       if (num_trans <= 0 || num_trans > (int)png_ptr->num_palette)
 | |
|       {
 | |
|          png_warning(png_ptr,"Invalid number of transparent colors specified");
 | |
|          return;
 | |
|       }
 | |
|       /* write the chunk out as it is */
 | |
|       png_write_chunk(png_ptr, png_tRNS, trans, (png_size_t)num_trans);
 | |
|    }
 | |
|    else if (color_type == PNG_COLOR_TYPE_GRAY)
 | |
|    {
 | |
|       /* one 16 bit value */
 | |
|       png_save_uint_16(buf, tran->gray);
 | |
|       png_write_chunk(png_ptr, png_tRNS, buf, (png_size_t)2);
 | |
|    }
 | |
|    else if (color_type == PNG_COLOR_TYPE_RGB)
 | |
|    {
 | |
|       /* three 16 bit values */
 | |
|       png_save_uint_16(buf, tran->red);
 | |
|       png_save_uint_16(buf + 2, tran->green);
 | |
|       png_save_uint_16(buf + 4, tran->blue);
 | |
|       png_write_chunk(png_ptr, png_tRNS, buf, (png_size_t)6);
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       png_warning(png_ptr, "Can't write tRNS with an alpha channel");
 | |
|    }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_bKGD_SUPPORTED)
 | |
| /* write the background chunk */
 | |
| void
 | |
| png_write_bKGD(png_structp png_ptr, png_color_16p back, int color_type)
 | |
| {
 | |
|    png_byte buf[6];
 | |
| 
 | |
|    png_debug(1, "in png_write_bKGD\n");
 | |
|    if (color_type == PNG_COLOR_TYPE_PALETTE)
 | |
|    {
 | |
|       if (
 | |
| #ifdef PNG_WRITE_EMPTY_PLTE_SUPPORTED
 | |
|           (!png_ptr->empty_plte_permitted ||
 | |
|           (png_ptr->empty_plte_permitted && png_ptr->num_palette)) &&
 | |
| #endif
 | |
|          back->index > png_ptr->num_palette)
 | |
|       {
 | |
|          png_warning(png_ptr, "Invalid background palette index");
 | |
|          return;
 | |
|       }
 | |
|       buf[0] = back->index;
 | |
|       png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)1);
 | |
|    }
 | |
|    else if (color_type & PNG_COLOR_MASK_COLOR)
 | |
|    {
 | |
|       png_save_uint_16(buf, back->red);
 | |
|       png_save_uint_16(buf + 2, back->green);
 | |
|       png_save_uint_16(buf + 4, back->blue);
 | |
|       png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)6);
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       png_save_uint_16(buf, back->gray);
 | |
|       png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)2);
 | |
|    }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_hIST_SUPPORTED)
 | |
| /* write the histogram */
 | |
| void
 | |
| png_write_hIST(png_structp png_ptr, png_uint_16p hist, int num_hist)
 | |
| {
 | |
|    int i;
 | |
|    png_byte buf[3];
 | |
| 
 | |
|    png_debug(1, "in png_write_hIST\n");
 | |
|    if (num_hist > (int)png_ptr->num_palette)
 | |
|    {
 | |
|       png_debug2(3, "num_hist = %d, num_palette = %d\n", num_hist,
 | |
|          png_ptr->num_palette);
 | |
|       png_warning(png_ptr, "Invalid number of histogram entries specified");
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    png_write_chunk_start(png_ptr, png_hIST, (png_uint_32)(num_hist * 2));
 | |
|    for (i = 0; i < num_hist; i++)
 | |
|    {
 | |
|       png_save_uint_16(buf, hist[i]);
 | |
|       png_write_chunk_data(png_ptr, buf, (png_size_t)2);
 | |
|    }
 | |
|    png_write_chunk_end(png_ptr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_tEXt_SUPPORTED) || defined(PNG_WRITE_zTXt_SUPPORTED) || \
 | |
|     defined(PNG_WRITE_pCAL_SUPPORTED)
 | |
| /* Check that the tEXt or zTXt keyword is valid per PNG 1.0 specification,
 | |
|  * and if invalid, correct the keyword rather than discarding the entire
 | |
|  * chunk.  The PNG 1.0 specification requires keywords 1-79 characters in
 | |
|  * length, forbids leading or trailing whitespace, multiple internal spaces,
 | |
|  * and the non-break space (0x80) from ISO 8859-1.  Returns keyword length.
 | |
|  *
 | |
|  * The new_key is allocated to hold the corrected keyword and must be freed
 | |
|  * by the calling routine.  This avoids problems with trying to write to
 | |
|  * static keywords without having to have duplicate copies of the strings.
 | |
|  */
 | |
| png_size_t
 | |
| png_check_keyword(png_structp png_ptr, png_charp key, png_charpp new_key)
 | |
| {
 | |
|    png_size_t key_len;
 | |
|    png_charp kp, dp;
 | |
|    int kflag;
 | |
| 
 | |
|    png_debug(1, "in png_check_keyword\n");
 | |
|    *new_key = NULL;
 | |
| 
 | |
|    if (key == NULL || (key_len = png_strlen(key)) == 0)
 | |
|    {
 | |
|       png_chunk_warning(png_ptr, "zero length keyword");
 | |
|       return ((png_size_t)0);
 | |
|    }
 | |
| 
 | |
|    png_debug1(2, "Keyword to be checked is '%s'\n", key);
 | |
| 
 | |
|    *new_key = (png_charp)png_malloc(png_ptr, (png_uint_32)(key_len + 1));
 | |
| 
 | |
|    /* Replace non-printing characters with a blank and print a warning */
 | |
|    for (kp = key, dp = *new_key; *kp != '\0'; kp++, dp++)
 | |
|    {
 | |
|       if (*kp < 0x20 || (*kp > 0x7E && (png_byte)*kp < 0xA1))
 | |
|       {
 | |
| #if !defined(PNG_NO_STDIO)
 | |
|          char msg[40];
 | |
| 
 | |
|          sprintf(msg, "invalid keyword character 0x%02X", *kp);
 | |
|          png_chunk_warning(png_ptr, msg);
 | |
| #else
 | |
|          png_chunk_warning(png_ptr, "invalid character in keyword");
 | |
| #endif
 | |
|          *dp = ' ';
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          *dp = *kp;
 | |
|       }
 | |
|    }
 | |
|    *dp = '\0';
 | |
| 
 | |
|    /* Remove any trailing white space. */
 | |
|    kp = *new_key + key_len - 1;
 | |
|    if (*kp == ' ')
 | |
|    {
 | |
|       png_chunk_warning(png_ptr, "trailing spaces removed from keyword");
 | |
| 
 | |
|       while (*kp == ' ')
 | |
|       {
 | |
|         *(kp--) = '\0';
 | |
|         key_len--;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* Remove any leading white space. */
 | |
|    kp = *new_key;
 | |
|    if (*kp == ' ')
 | |
|    {
 | |
|       png_chunk_warning(png_ptr, "leading spaces removed from keyword");
 | |
| 
 | |
|       while (*kp == ' ')
 | |
|       {
 | |
|         kp++;
 | |
|         key_len--;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    png_debug1(2, "Checking for multiple internal spaces in '%s'\n", kp);
 | |
| 
 | |
|    /* Remove multiple internal spaces. */
 | |
|    for (kflag = 0, dp = *new_key; *kp != '\0'; kp++)
 | |
|    {
 | |
|       if (*kp == ' ' && kflag == 0)
 | |
|       {
 | |
|          *(dp++) = *kp;
 | |
|          kflag = 1;
 | |
|       }
 | |
|       else if (*kp == ' ')
 | |
|       {
 | |
|          key_len--;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          *(dp++) = *kp;
 | |
|          kflag = 0;
 | |
|       }
 | |
|    }
 | |
|    *dp = '\0';
 | |
| 
 | |
|    if (key_len == 0)
 | |
|    {
 | |
|       png_chunk_warning(png_ptr, "zero length keyword");
 | |
|    }
 | |
| 
 | |
|    if (key_len > 79)
 | |
|    {
 | |
|       png_chunk_warning(png_ptr, "keyword length must be 1 - 79 characters");
 | |
|       new_key[79] = '\0';
 | |
|       key_len = 79;
 | |
|    }
 | |
| 
 | |
|    return (key_len);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_tEXt_SUPPORTED)
 | |
| /* write a tEXt chunk */
 | |
| void
 | |
| png_write_tEXt(png_structp png_ptr, png_charp key, png_charp text,
 | |
|    png_size_t text_len)
 | |
| {
 | |
|    png_size_t key_len;
 | |
|    png_charp new_key;
 | |
| 
 | |
|    png_debug(1, "in png_write_tEXt\n");
 | |
|    if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0)
 | |
|    {
 | |
|       png_warning(png_ptr, "Empty keyword in tEXt chunk");
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    if (text == NULL || *text == '\0')
 | |
|       text_len = 0;
 | |
| 
 | |
|    /* make sure we include the 0 after the key */
 | |
|    png_write_chunk_start(png_ptr, png_tEXt, (png_uint_32)key_len+text_len+1);
 | |
|    /*
 | |
|     * We leave it to the application to meet PNG-1.0 requirements on the
 | |
|     * contents of the text.  PNG-1.0 through PNG-1.2 discourage the use of
 | |
|     * any non-Latin-1 characters except for NEWLINE.  ISO PNG will forbid them.
 | |
|     */
 | |
|    png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1);
 | |
|    if (text_len)
 | |
|       png_write_chunk_data(png_ptr, (png_bytep)text, text_len);
 | |
| 
 | |
|    png_write_chunk_end(png_ptr);
 | |
|    png_free(png_ptr, new_key);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_zTXt_SUPPORTED)
 | |
| /* write a compressed text chunk */
 | |
| void
 | |
| png_write_zTXt(png_structp png_ptr, png_charp key, png_charp text,
 | |
|    png_size_t text_len, int compression)
 | |
| {
 | |
|    png_size_t key_len;
 | |
|    char buf[1];
 | |
|    png_charp new_key;
 | |
|    int i, ret;
 | |
|    png_charpp output_ptr = NULL; /* array of pointers to output */
 | |
|    int num_output_ptr = 0; /* number of output pointers used */
 | |
|    int max_output_ptr = 0; /* size of output_ptr */
 | |
| 
 | |
|    png_debug(1, "in png_write_zTXt\n");
 | |
| 
 | |
|    if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0)
 | |
|    {
 | |
|       png_warning(png_ptr, "Empty keyword in zTXt chunk");
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    if (text == NULL || *text == '\0' || compression==PNG_TEXT_COMPRESSION_NONE)
 | |
|    {
 | |
|       png_write_tEXt(png_ptr, new_key, text, (png_size_t)0);
 | |
|       png_free(png_ptr, new_key);
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    png_free(png_ptr, new_key);
 | |
| 
 | |
|    if (compression >= PNG_TEXT_COMPRESSION_LAST)
 | |
|    {
 | |
| #if !defined(PNG_NO_STDIO)
 | |
|       char msg[50];
 | |
|       sprintf(msg, "Unknown zTXt compression type %d", compression);
 | |
|       png_warning(png_ptr, msg);
 | |
| #else
 | |
|       png_warning(png_ptr, "Unknown zTXt compression type");
 | |
| #endif
 | |
|       compression = PNG_TEXT_COMPRESSION_zTXt;
 | |
|    }
 | |
| 
 | |
|    /* We can't write the chunk until we find out how much data we have,
 | |
|     * which means we need to run the compressor first and save the
 | |
|     * output.  This shouldn't be a problem, as the vast majority of
 | |
|     * comments should be reasonable, but we will set up an array of
 | |
|     * malloc'd pointers to be sure.
 | |
|     *
 | |
|     * If we knew the application was well behaved, we could simplify this
 | |
|     * greatly by assuming we can always malloc an output buffer large
 | |
|     * enough to hold the compressed text ((1001 * text_len / 1000) + 12)
 | |
|     * and malloc this directly.  The only time this would be a bad idea is
 | |
|     * if we can't malloc more than 64K and we have 64K of random input
 | |
|     * data, or if the input string is incredibly large (although this
 | |
|     * wouldn't cause a failure, just a slowdown due to swapping).
 | |
|     */
 | |
| 
 | |
|    /* set up the compression buffers */
 | |
|    png_ptr->zstream.avail_in = (uInt)text_len;
 | |
|    png_ptr->zstream.next_in = (Bytef *)text;
 | |
|    png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 | |
|    png_ptr->zstream.next_out = (Bytef *)png_ptr->zbuf;
 | |
| 
 | |
|    /* this is the same compression loop as in png_write_row() */
 | |
|    do
 | |
|    {
 | |
|       /* compress the data */
 | |
|       ret = deflate(&png_ptr->zstream, Z_NO_FLUSH);
 | |
|       if (ret != Z_OK)
 | |
|       {
 | |
|          /* error */
 | |
|          if (png_ptr->zstream.msg != NULL)
 | |
|             png_error(png_ptr, png_ptr->zstream.msg);
 | |
|          else
 | |
|             png_error(png_ptr, "zlib error");
 | |
|       }
 | |
|       /* check to see if we need more room */
 | |
|       if (!png_ptr->zstream.avail_out && png_ptr->zstream.avail_in)
 | |
|       {
 | |
|          /* make sure the output array has room */
 | |
|          if (num_output_ptr >= max_output_ptr)
 | |
|          {
 | |
|             int old_max;
 | |
| 
 | |
|             old_max = max_output_ptr;
 | |
|             max_output_ptr = num_output_ptr + 4;
 | |
|             if (output_ptr != NULL)
 | |
|             {
 | |
|                png_charpp old_ptr;
 | |
| 
 | |
|                old_ptr = output_ptr;
 | |
|                output_ptr = (png_charpp)png_malloc(png_ptr,
 | |
|                   (png_uint_32)(max_output_ptr * sizeof (png_charpp)));
 | |
|                png_memcpy(output_ptr, old_ptr, old_max * sizeof (png_charp));
 | |
|                png_free(png_ptr, old_ptr);
 | |
|             }
 | |
|             else
 | |
|                output_ptr = (png_charpp)png_malloc(png_ptr,
 | |
|                   (png_uint_32)(max_output_ptr * sizeof (png_charp)));
 | |
|          }
 | |
| 
 | |
|          /* save the data */
 | |
|          output_ptr[num_output_ptr] = (png_charp)png_malloc(png_ptr,
 | |
|             (png_uint_32)png_ptr->zbuf_size);
 | |
|          png_memcpy(output_ptr[num_output_ptr], png_ptr->zbuf,
 | |
|             png_ptr->zbuf_size);
 | |
|          num_output_ptr++;
 | |
| 
 | |
|          /* and reset the buffer */
 | |
|          png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 | |
|          png_ptr->zstream.next_out = png_ptr->zbuf;
 | |
|       }
 | |
|    /* continue until we don't have any more to compress */
 | |
|    } while (png_ptr->zstream.avail_in);
 | |
| 
 | |
|    /* finish the compression */
 | |
|    do
 | |
|    {
 | |
|       /* tell zlib we are finished */
 | |
|       ret = deflate(&png_ptr->zstream, Z_FINISH);
 | |
|       if (ret != Z_OK && ret != Z_STREAM_END)
 | |
|       {
 | |
|          /* we got an error */
 | |
|          if (png_ptr->zstream.msg != NULL)
 | |
|             png_error(png_ptr, png_ptr->zstream.msg);
 | |
|          else
 | |
|             png_error(png_ptr, "zlib error");
 | |
|       }
 | |
| 
 | |
|       /* check to see if we need more room */
 | |
|       if (!(png_ptr->zstream.avail_out) && ret == Z_OK)
 | |
|       {
 | |
|          /* check to make sure our output array has room */
 | |
|          if (num_output_ptr >= max_output_ptr)
 | |
|          {
 | |
|             int old_max;
 | |
| 
 | |
|             old_max = max_output_ptr;
 | |
|             max_output_ptr = num_output_ptr + 4;
 | |
|             if (output_ptr != NULL)
 | |
|             {
 | |
|                png_charpp old_ptr;
 | |
| 
 | |
|                old_ptr = output_ptr;
 | |
|                /* This could be optimized to realloc() */
 | |
|                output_ptr = (png_charpp)png_malloc(png_ptr,
 | |
|                   (png_uint_32)(max_output_ptr * sizeof (png_charpp)));
 | |
|                png_memcpy(output_ptr, old_ptr, old_max * sizeof (png_charp));
 | |
|                png_free(png_ptr, old_ptr);
 | |
|             }
 | |
|             else
 | |
|                output_ptr = (png_charpp)png_malloc(png_ptr,
 | |
|                   (png_uint_32)(max_output_ptr * sizeof (png_charp)));
 | |
|          }
 | |
| 
 | |
|          /* save off the data */
 | |
|          output_ptr[num_output_ptr] = (png_charp)png_malloc(png_ptr,
 | |
|             (png_uint_32)png_ptr->zbuf_size);
 | |
|          png_memcpy(output_ptr[num_output_ptr], png_ptr->zbuf,
 | |
|             png_ptr->zbuf_size);
 | |
|          num_output_ptr++;
 | |
| 
 | |
|          /* and reset the buffer pointers */
 | |
|          png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 | |
|          png_ptr->zstream.next_out = png_ptr->zbuf;
 | |
|       }
 | |
|    } while (ret != Z_STREAM_END);
 | |
| 
 | |
|    /* text length is number of buffers plus last buffer */
 | |
|    text_len = png_ptr->zbuf_size * num_output_ptr;
 | |
|    if (png_ptr->zstream.avail_out < png_ptr->zbuf_size)
 | |
|       text_len += png_ptr->zbuf_size - (png_size_t)png_ptr->zstream.avail_out;
 | |
| 
 | |
|    /* write start of chunk */
 | |
|    png_write_chunk_start(png_ptr, png_zTXt, (png_uint_32)(key_len+text_len+2));
 | |
|    /* write key */
 | |
|    png_write_chunk_data(png_ptr, (png_bytep)key, key_len + 1);
 | |
|    buf[0] = (png_byte)compression;
 | |
|    /* write compression */
 | |
|    png_write_chunk_data(png_ptr, (png_bytep)buf, (png_size_t)1);
 | |
| 
 | |
|    /* write saved output buffers, if any */
 | |
|    for (i = 0; i < num_output_ptr; i++)
 | |
|    {
 | |
|       png_write_chunk_data(png_ptr,(png_bytep)output_ptr[i],png_ptr->zbuf_size);
 | |
|       png_free(png_ptr, output_ptr[i]);
 | |
|    }
 | |
|    if (max_output_ptr != 0)
 | |
|       png_free(png_ptr, output_ptr);
 | |
|    /* write anything left in zbuf */
 | |
|    if (png_ptr->zstream.avail_out < (png_uint_32)png_ptr->zbuf_size)
 | |
|       png_write_chunk_data(png_ptr, png_ptr->zbuf,
 | |
|          png_ptr->zbuf_size - png_ptr->zstream.avail_out);
 | |
|    /* close the chunk */
 | |
|    png_write_chunk_end(png_ptr);
 | |
| 
 | |
|    /* reset zlib for another zTXt or the image data */
 | |
|    deflateReset(&png_ptr->zstream);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if defined(PNG_WRITE_oFFs_SUPPORTED)
 | |
| /* write the oFFs chunk */
 | |
| void
 | |
| png_write_oFFs(png_structp png_ptr, png_uint_32 x_offset,
 | |
|    png_uint_32 y_offset,
 | |
|    int unit_type)
 | |
| {
 | |
|    png_byte buf[9];
 | |
| 
 | |
|    png_debug(1, "in png_write_oFFs\n");
 | |
|    if (unit_type >= PNG_OFFSET_LAST)
 | |
|       png_warning(png_ptr, "Unrecognized unit type for oFFs chunk");
 | |
| 
 | |
|    png_save_uint_32(buf, x_offset);
 | |
|    png_save_uint_32(buf + 4, y_offset);
 | |
|    buf[8] = (png_byte)unit_type;
 | |
| 
 | |
|    png_write_chunk(png_ptr, png_oFFs, buf, (png_size_t)9);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_pCAL_SUPPORTED)
 | |
| /* write the pCAL chunk (png-scivis-19970203) */
 | |
| void
 | |
| png_write_pCAL(png_structp png_ptr, png_charp purpose, png_int_32 X0,
 | |
|    png_int_32 X1, int type, int nparams, png_charp units, png_charpp params)
 | |
| {
 | |
|    png_size_t purpose_len, units_len, total_len;
 | |
|    png_uint_32p params_len;
 | |
|    png_byte buf[10];
 | |
|    png_charp new_purpose;
 | |
|    int i;
 | |
| 
 | |
|    png_debug1(1, "in png_write_pCAL (%d parameters)\n", nparams);
 | |
|    if (type >= PNG_EQUATION_LAST)
 | |
|       png_warning(png_ptr, "Unrecognized equation type for pCAL chunk");
 | |
| 
 | |
|    purpose_len = png_check_keyword(png_ptr, purpose, &new_purpose) + 1;
 | |
|    png_debug1(3, "pCAL purpose length = %d\n", purpose_len);
 | |
|    units_len = png_strlen(units) + (nparams == 0 ? 0 : 1);
 | |
|    png_debug1(3, "pCAL units length = %d\n", units_len);
 | |
|    total_len = purpose_len + units_len + 10;
 | |
| 
 | |
|    params_len = (png_uint_32p)png_malloc(png_ptr, (png_uint_32)(nparams
 | |
|       *sizeof(png_uint_32)));
 | |
| 
 | |
|    /* Find the length of each parameter, making sure we don't count the
 | |
|       null terminator for the last parameter. */
 | |
|    for (i = 0; i < nparams; i++)
 | |
|    {
 | |
|       params_len[i] = png_strlen(params[i]) + (i == nparams - 1 ? 0 : 1);
 | |
|       png_debug2(3, "pCAL parameter %d length = %d\n", i, params_len[i]);
 | |
|       total_len += (png_size_t)params_len[i];
 | |
|    }
 | |
| 
 | |
|    png_debug1(3, "pCAL total length = %d\n", total_len);
 | |
|    png_write_chunk_start(png_ptr, png_pCAL, (png_uint_32)total_len);
 | |
|    png_write_chunk_data(png_ptr, (png_bytep)new_purpose, purpose_len);
 | |
|    png_save_int_32(buf, X0);
 | |
|    png_save_int_32(buf + 4, X1);
 | |
|    buf[8] = (png_byte)type;
 | |
|    buf[9] = (png_byte)nparams;
 | |
|    png_write_chunk_data(png_ptr, buf, (png_size_t)10);
 | |
|    png_write_chunk_data(png_ptr, (png_bytep)units, (png_size_t)units_len);
 | |
| 
 | |
|    png_free(png_ptr, new_purpose);
 | |
| 
 | |
|    for (i = 0; i < nparams; i++)
 | |
|    {
 | |
|       png_write_chunk_data(png_ptr, (png_bytep)params[i],
 | |
|          (png_size_t)params_len[i]);
 | |
|    }
 | |
| 
 | |
|    png_free(png_ptr, params_len);
 | |
|    png_write_chunk_end(png_ptr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_pHYs_SUPPORTED)
 | |
| /* write the pHYs chunk */
 | |
| void
 | |
| png_write_pHYs(png_structp png_ptr, png_uint_32 x_pixels_per_unit,
 | |
|    png_uint_32 y_pixels_per_unit,
 | |
|    int unit_type)
 | |
| {
 | |
|    png_byte buf[9];
 | |
| 
 | |
|    png_debug(1, "in png_write_pHYs\n");
 | |
|    if (unit_type >= PNG_RESOLUTION_LAST)
 | |
|       png_warning(png_ptr, "Unrecognized unit type for pHYs chunk");
 | |
| 
 | |
|    png_save_uint_32(buf, x_pixels_per_unit);
 | |
|    png_save_uint_32(buf + 4, y_pixels_per_unit);
 | |
|    buf[8] = (png_byte)unit_type;
 | |
| 
 | |
|    png_write_chunk(png_ptr, png_pHYs, buf, (png_size_t)9);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_WRITE_tIME_SUPPORTED)
 | |
| /* Write the tIME chunk.  Use either png_convert_from_struct_tm()
 | |
|  * or png_convert_from_time_t(), or fill in the structure yourself.
 | |
|  */
 | |
| void
 | |
| png_write_tIME(png_structp png_ptr, png_timep mod_time)
 | |
| {
 | |
|    png_byte buf[7];
 | |
| 
 | |
|    png_debug(1, "in png_write_tIME\n");
 | |
|    if (mod_time->month  > 12 || mod_time->month  < 1 ||
 | |
|        mod_time->day    > 31 || mod_time->day    < 1 ||
 | |
|        mod_time->hour   > 23 || mod_time->second > 60)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid time specified for tIME chunk");
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    png_save_uint_16(buf, mod_time->year);
 | |
|    buf[2] = mod_time->month;
 | |
|    buf[3] = mod_time->day;
 | |
|    buf[4] = mod_time->hour;
 | |
|    buf[5] = mod_time->minute;
 | |
|    buf[6] = mod_time->second;
 | |
| 
 | |
|    png_write_chunk(png_ptr, png_tIME, buf, (png_size_t)7);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* initializes the row writing capability of libpng */
 | |
| void
 | |
| png_write_start_row(png_structp png_ptr)
 | |
| {
 | |
|    png_size_t buf_size;
 | |
| 
 | |
|    png_debug(1, "in png_write_start_row\n");
 | |
|    buf_size = (png_size_t)(((png_ptr->width * png_ptr->usr_channels *
 | |
|                             png_ptr->usr_bit_depth + 7) >> 3) + 1);
 | |
| 
 | |
|    /* set up row buffer */
 | |
|    png_ptr->row_buf = (png_bytep)png_malloc(png_ptr, (png_uint_32)buf_size);
 | |
|    png_ptr->row_buf[0] = PNG_FILTER_VALUE_NONE;
 | |
| 
 | |
|    /* set up filtering buffer, if using this filter */
 | |
|    if (png_ptr->do_filter & PNG_FILTER_SUB)
 | |
|    {
 | |
|       png_ptr->sub_row = (png_bytep)png_malloc(png_ptr,
 | |
|          (png_ptr->rowbytes + 1));
 | |
|       png_ptr->sub_row[0] = PNG_FILTER_VALUE_SUB;
 | |
|    }
 | |
| 
 | |
|    /* We only need to keep the previous row if we are using one of these. */
 | |
|    if (png_ptr->do_filter & (PNG_FILTER_AVG | PNG_FILTER_UP | PNG_FILTER_PAETH))
 | |
|    {
 | |
|      /* set up previous row buffer */
 | |
|       png_ptr->prev_row = (png_bytep)png_malloc(png_ptr, (png_uint_32)buf_size);
 | |
|       png_memset(png_ptr->prev_row, 0, buf_size);
 | |
| 
 | |
|       if (png_ptr->do_filter & PNG_FILTER_UP)
 | |
|       {
 | |
|          png_ptr->up_row = (png_bytep )png_malloc(png_ptr,
 | |
|             (png_ptr->rowbytes + 1));
 | |
|          png_ptr->up_row[0] = PNG_FILTER_VALUE_UP;
 | |
|       }
 | |
| 
 | |
|       if (png_ptr->do_filter & PNG_FILTER_AVG)
 | |
|       {
 | |
|          png_ptr->avg_row = (png_bytep)png_malloc(png_ptr,
 | |
|             (png_ptr->rowbytes + 1));
 | |
|          png_ptr->avg_row[0] = PNG_FILTER_VALUE_AVG;
 | |
|       }
 | |
| 
 | |
|       if (png_ptr->do_filter & PNG_FILTER_PAETH)
 | |
|       {
 | |
|          png_ptr->paeth_row = (png_bytep )png_malloc(png_ptr,
 | |
|             (png_ptr->rowbytes + 1));
 | |
|          png_ptr->paeth_row[0] = PNG_FILTER_VALUE_PAETH;
 | |
|       }
 | |
|    }
 | |
| 
 | |
| #ifdef PNG_WRITE_INTERLACING_SUPPORTED
 | |
|    /* if interlaced, we need to set up width and height of pass */
 | |
|    if (png_ptr->interlaced)
 | |
|    {
 | |
|       if (!(png_ptr->transformations & PNG_INTERLACE))
 | |
|       {
 | |
|          png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 -
 | |
|             png_pass_ystart[0]) / png_pass_yinc[0];
 | |
|          png_ptr->usr_width = (png_ptr->width + png_pass_inc[0] - 1 -
 | |
|             png_pass_start[0]) / png_pass_inc[0];
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          png_ptr->num_rows = png_ptr->height;
 | |
|          png_ptr->usr_width = png_ptr->width;
 | |
|       }
 | |
|    }
 | |
|    else
 | |
| #endif
 | |
|    {
 | |
|       png_ptr->num_rows = png_ptr->height;
 | |
|       png_ptr->usr_width = png_ptr->width;
 | |
|    }
 | |
|    png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 | |
|    png_ptr->zstream.next_out = png_ptr->zbuf;
 | |
| }
 | |
| 
 | |
| /* Internal use only.  Called when finished processing a row of data. */
 | |
| void
 | |
| png_write_finish_row(png_structp png_ptr)
 | |
| {
 | |
|    int ret;
 | |
| 
 | |
|    png_debug(1, "in png_write_finish_row\n");
 | |
|    /* next row */
 | |
|    png_ptr->row_number++;
 | |
| 
 | |
|    /* see if we are done */
 | |
|    if (png_ptr->row_number < png_ptr->num_rows)
 | |
|       return;
 | |
| 
 | |
| #ifdef PNG_WRITE_INTERLACING_SUPPORTED
 | |
|    /* if interlaced, go to next pass */
 | |
|    if (png_ptr->interlaced)
 | |
|    {
 | |
|       png_ptr->row_number = 0;
 | |
|       if (png_ptr->transformations & PNG_INTERLACE)
 | |
|       {
 | |
|          png_ptr->pass++;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          /* loop until we find a non-zero width or height pass */
 | |
|          do
 | |
|          {
 | |
|             png_ptr->pass++;
 | |
|             if (png_ptr->pass >= 7)
 | |
|                break;
 | |
|             png_ptr->usr_width = (png_ptr->width +
 | |
|                png_pass_inc[png_ptr->pass] - 1 -
 | |
|                png_pass_start[png_ptr->pass]) /
 | |
|                png_pass_inc[png_ptr->pass];
 | |
|             png_ptr->num_rows = (png_ptr->height +
 | |
|                png_pass_yinc[png_ptr->pass] - 1 -
 | |
|                png_pass_ystart[png_ptr->pass]) /
 | |
|                png_pass_yinc[png_ptr->pass];
 | |
|             if (png_ptr->transformations & PNG_INTERLACE)
 | |
|                break;
 | |
|          } while (png_ptr->usr_width == 0 || png_ptr->num_rows == 0);
 | |
| 
 | |
|       }
 | |
| 
 | |
|       /* reset the row above the image for the next pass */
 | |
|       if (png_ptr->pass < 7)
 | |
|       {
 | |
|          if (png_ptr->prev_row != NULL)
 | |
|             png_memset(png_ptr->prev_row, 0,
 | |
|                (png_size_t) (((png_uint_32)png_ptr->usr_channels *
 | |
|                (png_uint_32)png_ptr->usr_bit_depth *
 | |
|                png_ptr->width + 7) >> 3) + 1);
 | |
|          return;
 | |
|       }
 | |
|    }
 | |
| #endif
 | |
| 
 | |
|    /* if we get here, we've just written the last row, so we need
 | |
|       to flush the compressor */
 | |
|    do
 | |
|    {
 | |
|       /* tell the compressor we are done */
 | |
|       ret = deflate(&png_ptr->zstream, Z_FINISH);
 | |
|       /* check for an error */
 | |
|       if (ret != Z_OK && ret != Z_STREAM_END)
 | |
|       {
 | |
|          if (png_ptr->zstream.msg != NULL)
 | |
|             png_error(png_ptr, png_ptr->zstream.msg);
 | |
|          else
 | |
|             png_error(png_ptr, "zlib error");
 | |
|       }
 | |
|       /* check to see if we need more room */
 | |
|       if (!(png_ptr->zstream.avail_out) && ret == Z_OK)
 | |
|       {
 | |
|          png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
 | |
|          png_ptr->zstream.next_out = png_ptr->zbuf;
 | |
|          png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 | |
|       }
 | |
|    } while (ret != Z_STREAM_END);
 | |
| 
 | |
|    /* write any extra space */
 | |
|    if (png_ptr->zstream.avail_out < png_ptr->zbuf_size)
 | |
|    {
 | |
|       png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size -
 | |
|          png_ptr->zstream.avail_out);
 | |
|    }
 | |
| 
 | |
|    deflateReset(&png_ptr->zstream);
 | |
| }
 | |
| 
 | |
| #if defined(PNG_WRITE_INTERLACING_SUPPORTED)
 | |
| /* Pick out the correct pixels for the interlace pass.
 | |
|  * The basic idea here is to go through the row with a source
 | |
|  * pointer and a destination pointer (sp and dp), and copy the
 | |
|  * correct pixels for the pass.  As the row gets compacted,
 | |
|  * sp will always be >= dp, so we should never overwrite anything.
 | |
|  * See the default: case for the easiest code to understand.
 | |
|  */
 | |
| void
 | |
| png_do_write_interlace(png_row_infop row_info, png_bytep row, int pass)
 | |
| {
 | |
|    png_debug(1, "in png_do_write_interlace\n");
 | |
|    /* we don't have to do anything on the last pass (6) */
 | |
| #if defined(PNG_USELESS_TESTS_SUPPORTED)
 | |
|    if (row != NULL && row_info != NULL && pass < 6)
 | |
| #else
 | |
|    if (pass < 6)
 | |
| #endif
 | |
|    {
 | |
|       /* each pixel depth is handled separately */
 | |
|       switch (row_info->pixel_depth)
 | |
|       {
 | |
|          case 1:
 | |
|          {
 | |
|             png_bytep sp;
 | |
|             png_bytep dp;
 | |
|             int shift;
 | |
|             int d;
 | |
|             int value;
 | |
|             png_uint_32 i;
 | |
|             png_uint_32 row_width = row_info->width;
 | |
| 
 | |
|             dp = row;
 | |
|             d = 0;
 | |
|             shift = 7;
 | |
|             for (i = png_pass_start[pass]; i < row_width;
 | |
|                i += png_pass_inc[pass])
 | |
|             {
 | |
|                sp = row + (png_size_t)(i >> 3);
 | |
|                value = (int)(*sp >> (7 - (int)(i & 7))) & 0x1;
 | |
|                d |= (value << shift);
 | |
| 
 | |
|                if (shift == 0)
 | |
|                {
 | |
|                   shift = 7;
 | |
|                   *dp++ = (png_byte)d;
 | |
|                   d = 0;
 | |
|                }
 | |
|                else
 | |
|                   shift--;
 | |
| 
 | |
|             }
 | |
|             if (shift != 7)
 | |
|                *dp = (png_byte)d;
 | |
|             break;
 | |
|          }
 | |
|          case 2:
 | |
|          {
 | |
|             png_bytep sp;
 | |
|             png_bytep dp;
 | |
|             int shift;
 | |
|             int d;
 | |
|             int value;
 | |
|             png_uint_32 i;
 | |
|             png_uint_32 row_width = row_info->width;
 | |
| 
 | |
|             dp = row;
 | |
|             shift = 6;
 | |
|             d = 0;
 | |
|             for (i = png_pass_start[pass]; i < row_width;
 | |
|                i += png_pass_inc[pass])
 | |
|             {
 | |
|                sp = row + (png_size_t)(i >> 2);
 | |
|                value = (*sp >> ((3 - (int)(i & 3)) << 1)) & 0x3;
 | |
|                d |= (value << shift);
 | |
| 
 | |
|                if (shift == 0)
 | |
|                {
 | |
|                   shift = 6;
 | |
|                   *dp++ = (png_byte)d;
 | |
|                   d = 0;
 | |
|                }
 | |
|                else
 | |
|                   shift -= 2;
 | |
|             }
 | |
|             if (shift != 6)
 | |
|                    *dp = (png_byte)d;
 | |
|             break;
 | |
|          }
 | |
|          case 4:
 | |
|          {
 | |
|             png_bytep sp;
 | |
|             png_bytep dp;
 | |
|             int shift;
 | |
|             int d;
 | |
|             int value;
 | |
|             png_uint_32 i;
 | |
|             png_uint_32 row_width = row_info->width;
 | |
| 
 | |
|             dp = row;
 | |
|             shift = 4;
 | |
|             d = 0;
 | |
|             for (i = png_pass_start[pass]; i < row_width;
 | |
|                i += png_pass_inc[pass])
 | |
|             {
 | |
|                sp = row + (png_size_t)(i >> 1);
 | |
|                value = (*sp >> ((1 - (int)(i & 1)) << 2)) & 0xf;
 | |
|                d |= (value << shift);
 | |
| 
 | |
|                if (shift == 0)
 | |
|                {
 | |
|                   shift = 4;
 | |
|                   *dp++ = (png_byte)d;
 | |
|                   d = 0;
 | |
|                }
 | |
|                else
 | |
|                   shift -= 4;
 | |
|             }
 | |
|             if (shift != 4)
 | |
|                *dp = (png_byte)d;
 | |
|             break;
 | |
|          }
 | |
|          default:
 | |
|          {
 | |
|             png_bytep sp;
 | |
|             png_bytep dp;
 | |
|             png_uint_32 i;
 | |
|             png_uint_32 row_width = row_info->width;
 | |
|             png_size_t pixel_bytes;
 | |
| 
 | |
|             /* start at the beginning */
 | |
|             dp = row;
 | |
|             /* find out how many bytes each pixel takes up */
 | |
|             pixel_bytes = (row_info->pixel_depth >> 3);
 | |
|             /* loop through the row, only looking at the pixels that
 | |
|                matter */
 | |
|             for (i = png_pass_start[pass]; i < row_width;
 | |
|                i += png_pass_inc[pass])
 | |
|             {
 | |
|                /* find out where the original pixel is */
 | |
|                sp = row + (png_size_t)i * pixel_bytes;
 | |
|                /* move the pixel */
 | |
|                if (dp != sp)
 | |
|                   png_memcpy(dp, sp, pixel_bytes);
 | |
|                /* next pixel */
 | |
|                dp += pixel_bytes;
 | |
|             }
 | |
|             break;
 | |
|          }
 | |
|       }
 | |
|       /* set new row width */
 | |
|       row_info->width = (row_info->width +
 | |
|          png_pass_inc[pass] - 1 -
 | |
|          png_pass_start[pass]) /
 | |
|          png_pass_inc[pass];
 | |
|          row_info->rowbytes = ((row_info->width *
 | |
|             row_info->pixel_depth + 7) >> 3);
 | |
|    }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* This filters the row, chooses which filter to use, if it has not already
 | |
|  * been specified by the application, and then writes the row out with the
 | |
|  * chosen filter.
 | |
|  */
 | |
| #define PNG_MAXSUM (~((png_uint_32)0) >> 1)
 | |
| #define PNG_HISHIFT 10
 | |
| #define PNG_LOMASK ((png_uint_32)0xffffL)
 | |
| #define PNG_HIMASK ((png_uint_32)(~PNG_LOMASK >> PNG_HISHIFT))
 | |
| void
 | |
| png_write_find_filter(png_structp png_ptr, png_row_infop row_info)
 | |
| {
 | |
|    png_bytep prev_row, best_row, row_buf;
 | |
|    png_uint_32 mins, bpp;
 | |
|    png_byte filter_to_do = png_ptr->do_filter;
 | |
|    png_uint_32 row_bytes = row_info->rowbytes;
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|    int num_p_filters = (int)png_ptr->num_prev_filters;
 | |
| #endif
 | |
| 
 | |
|    png_debug(1, "in png_write_find_filter\n");
 | |
|    /* find out how many bytes offset each pixel is */
 | |
|    bpp = (row_info->pixel_depth + 7) / 8;
 | |
| 
 | |
|    prev_row = png_ptr->prev_row;
 | |
|    best_row = row_buf = png_ptr->row_buf;
 | |
|    mins = PNG_MAXSUM;
 | |
| 
 | |
|    /* The prediction method we use is to find which method provides the
 | |
|     * smallest value when summing the absolute values of the distances
 | |
|     * from zero, using anything >= 128 as negative numbers.  This is known
 | |
|     * as the "minimum sum of absolute differences" heuristic.  Other
 | |
|     * heuristics are the "weighted minimum sum of absolute differences"
 | |
|     * (experimental and can in theory improve compression), and the "zlib
 | |
|     * predictive" method (not implemented yet), which does test compressions
 | |
|     * of lines using different filter methods, and then chooses the
 | |
|     * (series of) filter(s) that give minimum compressed data size (VERY
 | |
|     * computationally expensive).
 | |
|     *
 | |
|     * GRR 980525:  consider also
 | |
|     *   (1) minimum sum of absolute differences from running average (i.e.,
 | |
|     *       keep running sum of non-absolute differences & count of bytes)
 | |
|     *       [track dispersion, too?  restart average if dispersion too large?]
 | |
|     *  (1b) minimum sum of absolute differences from sliding average, probably
 | |
|     *       with window size <= deflate window (usually 32K)
 | |
|     *   (2) minimum sum of squared differences from zero or running average
 | |
|     *       (i.e., ~ root-mean-square approach)
 | |
|     */
 | |
| 
 | |
| 
 | |
|    /* We don't need to test the 'no filter' case if this is the only filter
 | |
|     * that has been chosen, as it doesn't actually do anything to the data.
 | |
|     */
 | |
|    if (filter_to_do & PNG_FILTER_NONE &&
 | |
|        filter_to_do != PNG_FILTER_NONE)
 | |
|    {
 | |
|       png_bytep rp;
 | |
|       png_uint_32 sum = 0;
 | |
|       png_uint_32 i;
 | |
|       int v;
 | |
| 
 | |
|       for (i = 0, rp = row_buf + 1; i < row_bytes; i++, rp++)
 | |
|       {
 | |
|          v = *rp;
 | |
|          sum += (v < 128) ? v : 256 - v;
 | |
|       }
 | |
| 
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|       if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
 | |
|       {
 | |
|          png_uint_32 sumhi, sumlo;
 | |
|          int j;
 | |
|          sumlo = sum & PNG_LOMASK;
 | |
|          sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; /* Gives us some footroom */
 | |
| 
 | |
|          /* Reduce the sum if we match any of the previous rows */
 | |
|          for (j = 0; j < num_p_filters; j++)
 | |
|          {
 | |
|             if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE)
 | |
|             {
 | |
|                sumlo = (sumlo * png_ptr->filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|                sumhi = (sumhi * png_ptr->filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|             }
 | |
|          }
 | |
| 
 | |
|          /* Factor in the cost of this filter (this is here for completeness,
 | |
|           * but it makes no sense to have a "cost" for the NONE filter, as
 | |
|           * it has the minimum possible computational cost - none).
 | |
|           */
 | |
|          sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >>
 | |
|             PNG_COST_SHIFT;
 | |
|          sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >>
 | |
|             PNG_COST_SHIFT;
 | |
| 
 | |
|          if (sumhi > PNG_HIMASK)
 | |
|             sum = PNG_MAXSUM;
 | |
|          else
 | |
|             sum = (sumhi << PNG_HISHIFT) + sumlo;
 | |
|       }
 | |
| #endif
 | |
|       mins = sum;
 | |
|    }
 | |
| 
 | |
|    /* sub filter */
 | |
|    if (filter_to_do == PNG_FILTER_SUB)
 | |
|    /* it's the only filter so no testing is needed */
 | |
|    {
 | |
|       png_bytep rp, lp, dp;
 | |
|       png_uint_32 i;
 | |
|       for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp;
 | |
|            i++, rp++, dp++)
 | |
|       {
 | |
|          *dp = *rp;
 | |
|       }
 | |
|       for (lp = row_buf + 1; i < row_bytes;
 | |
|          i++, rp++, lp++, dp++)
 | |
|       {
 | |
|          *dp = (png_byte)(((int)*rp - (int)*lp) & 0xff);
 | |
|       }
 | |
|       best_row = png_ptr->sub_row;
 | |
|    }
 | |
| 
 | |
|    else if (filter_to_do & PNG_FILTER_SUB)
 | |
|    {
 | |
|       png_bytep rp, dp, lp;
 | |
|       png_uint_32 sum = 0, lmins = mins;
 | |
|       png_uint_32 i;
 | |
|       int v;
 | |
| 
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|       /* We temporarily increase the "minimum sum" by the factor we
 | |
|        * would reduce the sum of this filter, so that we can do the
 | |
|        * early exit comparison without scaling the sum each time.
 | |
|        */
 | |
|       if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
 | |
|       {
 | |
|          int j;
 | |
|          png_uint_32 lmhi, lmlo;
 | |
|          lmlo = lmins & PNG_LOMASK;
 | |
|          lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 | |
| 
 | |
|          for (j = 0; j < num_p_filters; j++)
 | |
|          {
 | |
|             if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB)
 | |
|             {
 | |
|                lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|                lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|             }
 | |
|          }
 | |
| 
 | |
|          lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
 | |
|             PNG_COST_SHIFT;
 | |
|          lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
 | |
|             PNG_COST_SHIFT;
 | |
| 
 | |
|          if (lmhi > PNG_HIMASK)
 | |
|             lmins = PNG_MAXSUM;
 | |
|          else
 | |
|             lmins = (lmhi << PNG_HISHIFT) + lmlo;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp;
 | |
|            i++, rp++, dp++)
 | |
|       {
 | |
|          v = *dp = *rp;
 | |
| 
 | |
|          sum += (v < 128) ? v : 256 - v;
 | |
|       }
 | |
|       for (lp = row_buf + 1; i < row_info->rowbytes;
 | |
|          i++, rp++, lp++, dp++)
 | |
|       {
 | |
|          v = *dp = (png_byte)(((int)*rp - (int)*lp) & 0xff);
 | |
| 
 | |
|          sum += (v < 128) ? v : 256 - v;
 | |
| 
 | |
|          if (sum > lmins)  /* We are already worse, don't continue. */
 | |
|             break;
 | |
|       }
 | |
| 
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|       if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
 | |
|       {
 | |
|          int j;
 | |
|          png_uint_32 sumhi, sumlo;
 | |
|          sumlo = sum & PNG_LOMASK;
 | |
|          sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 | |
| 
 | |
|          for (j = 0; j < num_p_filters; j++)
 | |
|          {
 | |
|             if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB)
 | |
|             {
 | |
|                sumlo = (sumlo * png_ptr->inv_filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|                sumhi = (sumhi * png_ptr->inv_filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|             }
 | |
|          }
 | |
| 
 | |
|          sumlo = (sumlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
 | |
|             PNG_COST_SHIFT;
 | |
|          sumhi = (sumhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
 | |
|             PNG_COST_SHIFT;
 | |
| 
 | |
|          if (sumhi > PNG_HIMASK)
 | |
|             sum = PNG_MAXSUM;
 | |
|          else
 | |
|             sum = (sumhi << PNG_HISHIFT) + sumlo;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       if (sum < mins)
 | |
|       {
 | |
|          mins = sum;
 | |
|          best_row = png_ptr->sub_row;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* up filter */
 | |
|    if (filter_to_do == PNG_FILTER_UP)
 | |
|    {
 | |
|       png_bytep rp, dp, pp;
 | |
|       png_uint_32 i;
 | |
| 
 | |
|       for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1,
 | |
|            pp = prev_row + 1; i < row_bytes;
 | |
|            i++, rp++, pp++, dp++)
 | |
|       {
 | |
|          *dp = (png_byte)(((int)*rp - (int)*pp) & 0xff);
 | |
|       }
 | |
|       best_row = png_ptr->up_row;
 | |
|    }
 | |
| 
 | |
|    else if (filter_to_do & PNG_FILTER_UP)
 | |
|    {
 | |
|       png_bytep rp, dp, pp;
 | |
|       png_uint_32 sum = 0, lmins = mins;
 | |
|       png_uint_32 i;
 | |
|       int v;
 | |
| 
 | |
| 
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|       if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
 | |
|       {
 | |
|          int j;
 | |
|          png_uint_32 lmhi, lmlo;
 | |
|          lmlo = lmins & PNG_LOMASK;
 | |
|          lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 | |
| 
 | |
|          for (j = 0; j < num_p_filters; j++)
 | |
|          {
 | |
|             if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP)
 | |
|             {
 | |
|                lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|                lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|             }
 | |
|          }
 | |
| 
 | |
|          lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >>
 | |
|             PNG_COST_SHIFT;
 | |
|          lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >>
 | |
|             PNG_COST_SHIFT;
 | |
| 
 | |
|          if (lmhi > PNG_HIMASK)
 | |
|             lmins = PNG_MAXSUM;
 | |
|          else
 | |
|             lmins = (lmhi << PNG_HISHIFT) + lmlo;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1,
 | |
|            pp = prev_row + 1; i < row_bytes; i++)
 | |
|       {
 | |
|          v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);
 | |
| 
 | |
|          sum += (v < 128) ? v : 256 - v;
 | |
| 
 | |
|          if (sum > lmins)  /* We are already worse, don't continue. */
 | |
|             break;
 | |
|       }
 | |
| 
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|       if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
 | |
|       {
 | |
|          int j;
 | |
|          png_uint_32 sumhi, sumlo;
 | |
|          sumlo = sum & PNG_LOMASK;
 | |
|          sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 | |
| 
 | |
|          for (j = 0; j < num_p_filters; j++)
 | |
|          {
 | |
|             if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP)
 | |
|             {
 | |
|                sumlo = (sumlo * png_ptr->filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|                sumhi = (sumhi * png_ptr->filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|             }
 | |
|          }
 | |
| 
 | |
|          sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >>
 | |
|             PNG_COST_SHIFT;
 | |
|          sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >>
 | |
|             PNG_COST_SHIFT;
 | |
| 
 | |
|          if (sumhi > PNG_HIMASK)
 | |
|             sum = PNG_MAXSUM;
 | |
|          else
 | |
|             sum = (sumhi << PNG_HISHIFT) + sumlo;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       if (sum < mins)
 | |
|       {
 | |
|          mins = sum;
 | |
|          best_row = png_ptr->up_row;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* avg filter */
 | |
|    if (filter_to_do == PNG_FILTER_AVG)
 | |
|    {
 | |
|       png_bytep rp, dp, pp, lp;
 | |
|       png_uint_32 i;
 | |
|       for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1,
 | |
|            pp = prev_row + 1; i < bpp; i++)
 | |
|       {
 | |
|          *dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff);
 | |
|       }
 | |
|       for (lp = row_buf + 1; i < row_bytes; i++)
 | |
|       {
 | |
|          *dp++ = (png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2))
 | |
|                  & 0xff);
 | |
|       }
 | |
|       best_row = png_ptr->avg_row;
 | |
|    }
 | |
| 
 | |
|    else if (filter_to_do & PNG_FILTER_AVG)
 | |
|    {
 | |
|       png_bytep rp, dp, pp, lp;
 | |
|       png_uint_32 sum = 0, lmins = mins;
 | |
|       png_uint_32 i;
 | |
|       int v;
 | |
| 
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|       if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
 | |
|       {
 | |
|          int j;
 | |
|          png_uint_32 lmhi, lmlo;
 | |
|          lmlo = lmins & PNG_LOMASK;
 | |
|          lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 | |
| 
 | |
|          for (j = 0; j < num_p_filters; j++)
 | |
|          {
 | |
|             if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_AVG)
 | |
|             {
 | |
|                lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|                lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|             }
 | |
|          }
 | |
| 
 | |
|          lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >>
 | |
|             PNG_COST_SHIFT;
 | |
|          lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >>
 | |
|             PNG_COST_SHIFT;
 | |
| 
 | |
|          if (lmhi > PNG_HIMASK)
 | |
|             lmins = PNG_MAXSUM;
 | |
|          else
 | |
|             lmins = (lmhi << PNG_HISHIFT) + lmlo;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1,
 | |
|            pp = prev_row + 1; i < bpp; i++)
 | |
|       {
 | |
|          v = *dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff);
 | |
| 
 | |
|          sum += (v < 128) ? v : 256 - v;
 | |
|       }
 | |
|       for (lp = row_buf + 1; i < row_bytes; i++)
 | |
|       {
 | |
|          v = *dp++ =
 | |
|           (png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2)) & 0xff);
 | |
| 
 | |
|          sum += (v < 128) ? v : 256 - v;
 | |
| 
 | |
|          if (sum > lmins)  /* We are already worse, don't continue. */
 | |
|             break;
 | |
|       }
 | |
| 
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|       if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
 | |
|       {
 | |
|          int j;
 | |
|          png_uint_32 sumhi, sumlo;
 | |
|          sumlo = sum & PNG_LOMASK;
 | |
|          sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 | |
| 
 | |
|          for (j = 0; j < num_p_filters; j++)
 | |
|          {
 | |
|             if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE)
 | |
|             {
 | |
|                sumlo = (sumlo * png_ptr->filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|                sumhi = (sumhi * png_ptr->filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|             }
 | |
|          }
 | |
| 
 | |
|          sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >>
 | |
|             PNG_COST_SHIFT;
 | |
|          sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >>
 | |
|             PNG_COST_SHIFT;
 | |
| 
 | |
|          if (sumhi > PNG_HIMASK)
 | |
|             sum = PNG_MAXSUM;
 | |
|          else
 | |
|             sum = (sumhi << PNG_HISHIFT) + sumlo;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       if (sum < mins)
 | |
|       {
 | |
|          mins = sum;
 | |
|          best_row = png_ptr->avg_row;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* Paeth filter */
 | |
|    if (filter_to_do == PNG_FILTER_PAETH)
 | |
|    {
 | |
|       png_bytep rp, dp, pp, cp, lp;
 | |
|       png_uint_32 i;
 | |
|       for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1,
 | |
|            pp = prev_row + 1; i < bpp; i++)
 | |
|       {
 | |
|          *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);
 | |
|       }
 | |
| 
 | |
|       for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++)
 | |
|       {
 | |
|          int a, b, c, pa, pb, pc, p;
 | |
| 
 | |
|          b = *pp++;
 | |
|          c = *cp++;
 | |
|          a = *lp++;
 | |
| 
 | |
|          p = b - c;
 | |
|          pc = a - c;
 | |
| 
 | |
| #ifdef PNG_USE_ABS
 | |
|          pa = abs(p);
 | |
|          pb = abs(pc);
 | |
|          pc = abs(p + pc);
 | |
| #else
 | |
|          pa = p < 0 ? -p : p;
 | |
|          pb = pc < 0 ? -pc : pc;
 | |
|          pc = (p + pc) < 0 ? -(p + pc) : p + pc;
 | |
| #endif
 | |
| 
 | |
|          p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c;
 | |
| 
 | |
|          *dp++ = (png_byte)(((int)*rp++ - p) & 0xff);
 | |
|       }
 | |
|       best_row = png_ptr->paeth_row;
 | |
|    }
 | |
| 
 | |
|    else if (filter_to_do & PNG_FILTER_PAETH)
 | |
|    {
 | |
|       png_bytep rp, dp, pp, cp, lp;
 | |
|       png_uint_32 sum = 0, lmins = mins;
 | |
|       png_uint_32 i;
 | |
|       int v;
 | |
| 
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|       if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
 | |
|       {
 | |
|          int j;
 | |
|          png_uint_32 lmhi, lmlo;
 | |
|          lmlo = lmins & PNG_LOMASK;
 | |
|          lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 | |
| 
 | |
|          for (j = 0; j < num_p_filters; j++)
 | |
|          {
 | |
|             if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH)
 | |
|             {
 | |
|                lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|                lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|             }
 | |
|          }
 | |
| 
 | |
|          lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >>
 | |
|             PNG_COST_SHIFT;
 | |
|          lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >>
 | |
|             PNG_COST_SHIFT;
 | |
| 
 | |
|          if (lmhi > PNG_HIMASK)
 | |
|             lmins = PNG_MAXSUM;
 | |
|          else
 | |
|             lmins = (lmhi << PNG_HISHIFT) + lmlo;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1,
 | |
|            pp = prev_row + 1; i < bpp; i++)
 | |
|       {
 | |
|          v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);
 | |
| 
 | |
|          sum += (v < 128) ? v : 256 - v;
 | |
|       }
 | |
| 
 | |
|       for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++)
 | |
|       {
 | |
|          int a, b, c, pa, pb, pc, p;
 | |
| 
 | |
|          b = *pp++;
 | |
|          c = *cp++;
 | |
|          a = *lp++;
 | |
| 
 | |
| #ifndef PNG_SLOW_PAETH
 | |
|          p = b - c;
 | |
|          pc = a - c;
 | |
| #ifdef PNG_USE_ABS
 | |
|          pa = abs(p);
 | |
|          pb = abs(pc);
 | |
|          pc = abs(p + pc);
 | |
| #else
 | |
|          pa = p < 0 ? -p : p;
 | |
|          pb = pc < 0 ? -pc : pc;
 | |
|          pc = (p + pc) < 0 ? -(p + pc) : p + pc;
 | |
| #endif
 | |
|          p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c;
 | |
| #else /* PNG_SLOW_PAETH */
 | |
|          p = a + b - c;
 | |
|          pa = abs(p - a);
 | |
|          pb = abs(p - b);
 | |
|          pc = abs(p - c);
 | |
|          if (pa <= pb && pa <= pc)
 | |
|             p = a;
 | |
|          else if (pb <= pc)
 | |
|             p = b;
 | |
|          else
 | |
|             p = c;
 | |
| #endif /* PNG_SLOW_PAETH */
 | |
| 
 | |
|          v = *dp++ = (png_byte)(((int)*rp++ - p) & 0xff);
 | |
| 
 | |
|          sum += (v < 128) ? v : 256 - v;
 | |
| 
 | |
|          if (sum > lmins)  /* We are already worse, don't continue. */
 | |
|             break;
 | |
|       }
 | |
| 
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|       if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
 | |
|       {
 | |
|          int j;
 | |
|          png_uint_32 sumhi, sumlo;
 | |
|          sumlo = sum & PNG_LOMASK;
 | |
|          sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 | |
| 
 | |
|          for (j = 0; j < num_p_filters; j++)
 | |
|          {
 | |
|             if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH)
 | |
|             {
 | |
|                sumlo = (sumlo * png_ptr->filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|                sumhi = (sumhi * png_ptr->filter_weights[j]) >>
 | |
|                   PNG_WEIGHT_SHIFT;
 | |
|             }
 | |
|          }
 | |
| 
 | |
|          sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >>
 | |
|             PNG_COST_SHIFT;
 | |
|          sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >>
 | |
|             PNG_COST_SHIFT;
 | |
| 
 | |
|          if (sumhi > PNG_HIMASK)
 | |
|             sum = PNG_MAXSUM;
 | |
|          else
 | |
|             sum = (sumhi << PNG_HISHIFT) + sumlo;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       if (sum < mins)
 | |
|       {
 | |
|          best_row = png_ptr->paeth_row;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* Do the actual writing of the filtered row data from the chosen filter. */
 | |
| 
 | |
|    png_write_filtered_row(png_ptr, best_row);
 | |
| 
 | |
| #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
 | |
|    /* Save the type of filter we picked this time for future calculations */
 | |
|    if (png_ptr->num_prev_filters > 0)
 | |
|    {
 | |
|       int j;
 | |
|       for (j = 1; j < num_p_filters; j++)
 | |
|       {
 | |
|          png_ptr->prev_filters[j] = png_ptr->prev_filters[j - 1];
 | |
|       }
 | |
|       png_ptr->prev_filters[j] = best_row[0];
 | |
|    }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Do the actual writing of a previously filtered row. */
 | |
| void
 | |
| png_write_filtered_row(png_structp png_ptr, png_bytep filtered_row)
 | |
| {
 | |
|    png_debug(1, "in png_write_filtered_row\n");
 | |
|    png_debug1(2, "filter = %d\n", filtered_row[0]);
 | |
|    /* set up the zlib input buffer */
 | |
|    png_ptr->zstream.next_in = filtered_row;
 | |
|    png_ptr->zstream.avail_in = (uInt)png_ptr->row_info.rowbytes + 1;
 | |
|    /* repeat until we have compressed all the data */
 | |
|    do
 | |
|    {
 | |
|       int ret; /* return of zlib */
 | |
| 
 | |
|       /* compress the data */
 | |
|       ret = deflate(&png_ptr->zstream, Z_NO_FLUSH);
 | |
|       /* check for compression errors */
 | |
|       if (ret != Z_OK)
 | |
|       {
 | |
|          if (png_ptr->zstream.msg != NULL)
 | |
|             png_error(png_ptr, png_ptr->zstream.msg);
 | |
|          else
 | |
|             png_error(png_ptr, "zlib error");
 | |
|       }
 | |
| 
 | |
|       /* see if it is time to write another IDAT */
 | |
|       if (!(png_ptr->zstream.avail_out))
 | |
|       {
 | |
|          /* write the IDAT and reset the zlib output buffer */
 | |
|          png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
 | |
|          png_ptr->zstream.next_out = png_ptr->zbuf;
 | |
|          png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 | |
|       }
 | |
|    /* repeat until all data has been compressed */
 | |
|    } while (png_ptr->zstream.avail_in);
 | |
| 
 | |
|    /* swap the current and previous rows */
 | |
|    if (png_ptr->prev_row != NULL)
 | |
|    {
 | |
|       png_bytep tptr;
 | |
| 
 | |
|       tptr = png_ptr->prev_row;
 | |
|       png_ptr->prev_row = png_ptr->row_buf;
 | |
|       png_ptr->row_buf = tptr;
 | |
|    }
 | |
| 
 | |
|    /* finish row - updates counters and flushes zlib if last row */
 | |
|    png_write_finish_row(png_ptr);
 | |
| 
 | |
| #if defined(PNG_WRITE_FLUSH_SUPPORTED)
 | |
|    png_ptr->flush_rows++;
 | |
| 
 | |
|    if (png_ptr->flush_dist > 0 &&
 | |
|        png_ptr->flush_rows >= png_ptr->flush_dist)
 | |
|    {
 | |
|       png_write_flush(png_ptr);
 | |
|    }
 | |
| #endif /* PNG_WRITE_FLUSH_SUPPORTED */
 | |
| }
 | 
