libpng/contrib/tools/genpng.c
Cosmin Truta 77c3a39299 Clean up comments and whitespace characters in source files
Remove all remaining "last changed" version info from source comments.
(The version control system maintains this information automatically.)

Delete the trailing whitespace characters.
2022-11-20 21:23:33 +02:00

883 lines
26 KiB
C

/* genpng
*
* COPYRIGHT: Written by John Cunningham Bowler, 2015.
* Revised by Glenn Randers-Pehrson, 2017, to add buffer-size check.
* To the extent possible under law, the authors have waived all copyright and
* related or neighboring rights to this work. This work is published from:
* United States.
*
* Generate a PNG with an alpha channel, correctly.
*
* This is a test case generator; the resultant PNG files are only of interest
* to those of us who care about whether the edges of circles are green, red,
* or yellow.
*
* The program generates an RGB+Alpha PNG of a given size containing the given
* shapes on a transparent background:
*
* genpng width height { shape }
* shape ::= color width shape x1 y1 x2 y2
*
* 'color' is:
*
* black white red green yellow blue brown purple pink orange gray cyan
*
* The point is to have colors that are linguistically meaningful plus that old
* bugbear of the department store dress murders, Cyan, the only color we argue
* about.
*
* 'shape' is:
*
* circle: an ellipse
* square: a rectangle
* line: a straight line
*
* Each shape is followed by four numbers, these are two points in the output
* coordinate space (as real numbers) which describe the circle, square, or
* line. The shape is filled if it is preceded by 'filled' (not valid for
* 'line') or is drawn with a line, in which case the width of the line must
* precede the shape.
*
* The whole set of information can be repeated as many times as desired:
*
* shape ::= color width shape x1 y1 x2 y2
*
* color ::= black|white|red|green|yellow|blue
* color ::= brown|purple|pink|orange|gray|cyan
* width ::= filled
* width ::= <number>
* shape ::= circle|square|line
* x1 ::= <number>
* x2 ::= <number>
* y1 ::= <number>
* y2 ::= <number>
*
* The output PNG is generated by down-sampling a 4x supersampled image using
* a bi-cubic filter. The bi-cubic has a 2 (output) pixel width, so an 8x8
* array of super-sampled points contribute to each output pixel. The value of
* a super-sampled point is found using an unfiltered, aliased, infinite
* precision image: Each shape from the last to the first is checked to see if
* the point is in the drawn area and, if it is, the color of the point is the
* color of the shape and the alpha is 1, if not the previous shape is checked.
*
* This is an aliased algorithm because no filtering is done; a point is either
* inside or outside each shape and 'close' points do not contribute to the
* sample. The down-sampling is relied on to correct the error of not using
* a filter.
*
* The line end-caps are 'flat'; they go through the points. The square line
* joins are mitres; the outside of the lines are continued to the point of
* intersection.
*/
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
/* Normally use <png.h> here to get the installed libpng, but this is done to
* ensure the code picks up the local libpng implementation:
*/
#include "../../png.h"
#if defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) && defined(PNG_STDIO_SUPPORTED)
static const struct color
{
const char *name;
double red;
double green;
double blue;
} colors[] =
/* color ::= black|white|red|green|yellow|blue
* color ::= brown|purple|pink|orange|gray|cyan
*/
{
{ "black", 0, 0, 0 },
{ "white", 1, 1, 1 },
{ "red", 1, 0, 0 },
{ "green", 0, 1, 0 },
{ "yellow", 1, 1, 0 },
{ "blue", 0, 0, 1 },
{ "brown", .5, .125, 0 },
{ "purple", 1, 0, 1 },
{ "pink", 1, .5, .5 },
{ "orange", 1, .5, 0 },
{ "gray", 0, .5, .5 },
{ "cyan", 0, 1, 1 }
};
#define color_count ((sizeof colors)/(sizeof colors[0]))
static const struct color *
color_of(const char *arg)
{
int icolor = color_count;
while (--icolor >= 0)
{
if (strcmp(colors[icolor].name, arg) == 0)
return colors+icolor;
}
fprintf(stderr, "genpng: invalid color %s\n", arg);
exit(1);
}
static double
width_of(const char *arg)
{
if (strcmp(arg, "filled") == 0)
return 0;
else
{
char *ep = NULL;
double w = strtod(arg, &ep);
if (ep != NULL && *ep == 0 && w > 0)
return w;
}
fprintf(stderr, "genpng: invalid line width %s\n", arg);
exit(1);
}
static double
coordinate_of(const char *arg)
{
char *ep = NULL;
double w = strtod(arg, &ep);
if (ep != NULL && *ep == 0)
return w;
fprintf(stderr, "genpng: invalid coordinate value %s\n", arg);
exit(1);
}
struct arg; /* forward declaration */
typedef int (*shape_fn_ptr)(const struct arg *arg, double x, double y);
/* A function to determine if (x,y) is inside the shape.
*
* There are two implementations:
*
* inside_fn: returns true if the point is inside
* check_fn: returns;
* -1: the point is outside the shape by more than the filter width (2)
* 0: the point may be inside the shape
* +1: the point is inside the shape by more than the filter width
*/
#define OUTSIDE (-1)
#define INSIDE (1)
struct arg
{
const struct color *color;
shape_fn_ptr inside_fn;
shape_fn_ptr check_fn;
double width; /* line width, 0 for 'filled' */
double x1, y1, x2, y2;
};
/* IMPLEMENTATION NOTE:
*
* We want the contribution of each shape to the sample corresponding to each
* pixel. This could be obtained by super sampling the image to infinite
* dimensions, finding each point within the shape and assigning that a value
* '1' while leaving every point outside the shape with value '0' then
* downsampling to the image size with sinc; computationally very expensive.
*
* Approximations are as follows:
*
* 1) If the pixel coordinate is within the shape assume the sample has the
* shape color and is opaque, else assume there is no contribution from
* the shape.
*
* This is the equivalent of aliased rendering or resampling an image with
* a block filter. The maximum error in the calculated alpha (which will
* always be 0 or 1) is 0.5.
*
* 2) If the shape is within a square of size 1x1 centered on the pixel assume
* that the shape obscures an amount of the pixel equal to its area within
* that square.
*
* This is the equivalent of 'pixel coverage' alpha calculation or resampling
* an image with a bi-linear filter. The maximum error is over 0.2, but the
* results are often acceptable.
*
* This can be approximated by applying (1) to a super-sampled image then
* downsampling with a bi-linear filter. The error in the super-sampled
* image is 0.5 per sample, but the resampling reduces this.
*
* 3) Use a better filter with a super-sampled image; in the limit this is the
* sinc() approach.
*
* 4) Do the geometric calculation; a bivariate definite integral across the
* shape, unfortunately this means evaluating Si(x), the integral of sinc(x),
* which is still a lot of math.
*
* This code uses approach (3) with a bi-cubic filter and 8x super-sampling
* and method (1) for the super-samples. This means that the sample is either
* 0 or 1, depending on whether the sub-pixel is within or outside the shape.
* The bi-cubic weights are also fixed and the 16 required weights are
* pre-computed here (note that the 'scale' setting will need to be changed if
* 'super' is increased).
*
* The code also calculates a sum to the edge of the filter. This is not
* currently used by could be used to optimize the calculation.
*/
#if 0 /* bc code */
scale=10
super=8
define bicubic(x) {
if (x <= 1) return (1.5*x - 2.5)*x*x + 1;
if (x < 2) return (((2.5 - 0.5*x)*x - 4)*x + 2);
return 0;
}
define sum(x) {
auto s;
s = 0;
while (x < 2*super) {
s = s + bicubic(x/super);
x = x + 1;
}
return s;
}
define results(x) {
auto b, s;
b = bicubic(x/super);
s = sum(x);
print " /*", x, "*/ { ", b, ", ", s, " }";
return 1;
}
x=0
while (x<2*super) {
x = x + results(x)
if (x < 2*super) print ","
print "\n"
}
quit
#endif
#define BICUBIC1(x) /* |x| <= 1 */ ((1.5*(x)* - 2.5)*(x)*(x) + 1)
#define BICUBIC2(x) /* 1 < |x| < 2 */ (((2.5 - 0.5*(x))*(x) - 4)*(x) + 2)
#define FILTER_WEIGHT 9 /* Twice the first sum below */
#define FILTER_WIDTH 2 /* Actually half the width; -2..+2 */
#define FILTER_STEPS 8 /* steps per filter unit */
static const double
bicubic[16][2] =
{
/* These numbers are exact; the weight for the filter is 1/9, but this
* would make the numbers inexact, so it is not included here.
*/
/* bicubic sum */
/* 0*/ { 1.0000000000, 4.5000000000 },
/* 1*/ { .9638671875, 3.5000000000 },
/* 2*/ { .8671875000, 2.5361328125 },
/* 3*/ { .7275390625, 1.6689453125 },
/* 4*/ { .5625000000, .9414062500 },
/* 5*/ { .3896484375, .3789062500 },
/* 6*/ { .2265625000, -.0107421875 },
/* 7*/ { .0908203125, -.2373046875 },
/* 8*/ { 0, -.3281250000 },
/* 9*/ { -.0478515625, -.3281250000 },
/*10*/ { -.0703125000, -.2802734375 },
/*11*/ { -.0732421875, -.2099609375 },
/*12*/ { -.0625000000, -.1367187500 },
/*13*/ { -.0439453125, -.0742187500 },
/*14*/ { -.0234375000, -.0302734375 },
/*15*/ { -.0068359375, -.0068359375 }
};
static double
alpha_calc(const struct arg *arg, double x, double y)
{
/* For [x-2..x+2],[y-2,y+2] calculate the weighted bicubic given a function
* which tells us whether a point is inside or outside the shape. First
* check if we need to do this at all:
*/
switch (arg->check_fn(arg, x, y))
{
case OUTSIDE:
return 0; /* all samples outside the shape */
case INSIDE:
return 1; /* all samples inside the shape */
default:
{
int dy;
double alpha = 0;
# define FILTER_D (FILTER_WIDTH*FILTER_STEPS-1)
for (dy=-FILTER_D; dy<=FILTER_D; ++dy)
{
double wy = bicubic[abs(dy)][0];
if (wy != 0)
{
double alphay = 0;
int dx;
for (dx=-FILTER_D; dx<=FILTER_D; ++dx)
{
double wx = bicubic[abs(dx)][0];
if (wx != 0 && arg->inside_fn(arg, x+dx/16, y+dy/16))
alphay += wx;
}
alpha += wy * alphay;
}
}
/* This needs to be weighted for each dimension: */
return alpha / (FILTER_WEIGHT*FILTER_WEIGHT);
}
}
}
/* These are the shape functions. */
/* "square",
* { inside_square_filled, check_square_filled },
* { inside_square, check_square }
*/
static int
square_check(double x, double y, double x1, double y1, double x2, double y2)
/* Is x,y inside the square (x1,y1)..(x2,y2)? */
{
/* Do a modified Cohen-Sutherland on one point, bit patterns that indicate
* 'outside' are:
*
* x<x1 | x<y1 | x<x2 | x<y2
* 0 x 0 x To the right
* 1 x 1 x To the left
* x 0 x 0 Below
* x 1 x 1 Above
*
* So 'inside' is (x<x1) != (x<x2) && (y<y1) != (y<y2);
*/
return ((x<x1) ^ (x<x2)) & ((y<y1) ^ (y<y2));
}
static int
inside_square_filled(const struct arg *arg, double x, double y)
{
return square_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
}
static int
square_check_line(const struct arg *arg, double x, double y, double w)
/* Check for a point being inside the boundaries implied by the given arg
* and assuming a width 2*w each side of the boundaries. This returns the
* 'check' INSIDE/OUTSIDE/0 result but note the semantics:
*
* +--------------+
* | | OUTSIDE
* | INSIDE |
* | |
* +--------------+
*
* And '0' means within the line boundaries.
*/
{
double cx = (arg->x1+arg->x2)/2;
double wx = fabs(arg->x1-arg->x2)/2;
double cy = (arg->y1+arg->y2)/2;
double wy = fabs(arg->y1-arg->y2)/2;
if (square_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
{
/* Inside, but maybe too far; check for the redundant case where
* the lines overlap:
*/
wx -= w;
wy -= w;
if (wx > 0 && wy > 0 && square_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
return INSIDE; /* between (inside) the boundary lines. */
return 0; /* inside the lines themselves. */
}
return OUTSIDE; /* outside the boundary lines. */
}
static int
check_square_filled(const struct arg *arg, double x, double y)
{
/* The filter extends +/-FILTER_WIDTH each side of each output point, so
* the check has to expand and contract the square by that amount; '0'
* means close enough to the edge of the square that the bicubic filter has
* to be run, OUTSIDE means alpha==0, INSIDE means alpha==1.
*/
return square_check_line(arg, x, y, FILTER_WIDTH);
}
static int
inside_square(const struct arg *arg, double x, double y)
{
/* Return true if within the drawn lines, else false, no need to distinguish
* INSIDE vs OUTSIDE here:
*/
return square_check_line(arg, x, y, arg->width/2) == 0;
}
static int
check_square(const struct arg *arg, double x, double y)
{
/* So for this function a result of 'INSIDE' means inside the actual lines.
*/
double w = arg->width/2;
if (square_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
{
/* Somewhere close to the boundary lines. If far enough inside one of
* them then we can return INSIDE:
*/
w -= FILTER_WIDTH;
if (w > 0 && square_check_line(arg, x, y, w) == 0)
return INSIDE;
/* Point is somewhere in the filter region: */
return 0;
}
else /* Inside or outside the square by more than w+FILTER_WIDTH. */
return OUTSIDE;
}
/* "circle",
* { inside_circle_filled, check_circle_filled },
* { inside_circle, check_circle }
*
* The functions here are analogous to the square ones; however, they check
* the corresponding ellipse as opposed to the rectangle.
*/
static int
circle_check(double x, double y, double x1, double y1, double x2, double y2)
{
if (square_check(x, y, x1, y1, x2, y2))
{
/* Inside the square, so maybe inside the circle too: */
const double cx = (x1 + x2)/2;
const double cy = (y1 + y2)/2;
const double dx = x1 - x2;
const double dy = y1 - y2;
x = (x - cx)/dx;
y = (y - cy)/dy;
/* It is outside if the distance from the center is more than half the
* diameter:
*/
return x*x+y*y < .25;
}
return 0; /* outside */
}
static int
inside_circle_filled(const struct arg *arg, double x, double y)
{
return circle_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
}
static int
circle_check_line(const struct arg *arg, double x, double y, double w)
/* Check for a point being inside the boundaries implied by the given arg
* and assuming a width 2*w each side of the boundaries. This function has
* the same semantic as square_check_line but tests the circle.
*/
{
double cx = (arg->x1+arg->x2)/2;
double wx = fabs(arg->x1-arg->x2)/2;
double cy = (arg->y1+arg->y2)/2;
double wy = fabs(arg->y1-arg->y2)/2;
if (circle_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
{
/* Inside, but maybe too far; check for the redundant case where
* the lines overlap:
*/
wx -= w;
wy -= w;
if (wx > 0 && wy > 0 && circle_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
return INSIDE; /* between (inside) the boundary lines. */
return 0; /* inside the lines themselves. */
}
return OUTSIDE; /* outside the boundary lines. */
}
static int
check_circle_filled(const struct arg *arg, double x, double y)
{
return circle_check_line(arg, x, y, FILTER_WIDTH);
}
static int
inside_circle(const struct arg *arg, double x, double y)
{
return circle_check_line(arg, x, y, arg->width/2) == 0;
}
static int
check_circle(const struct arg *arg, double x, double y)
{
/* Exactly as the 'square' code. */
double w = arg->width/2;
if (circle_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
{
w -= FILTER_WIDTH;
if (w > 0 && circle_check_line(arg, x, y, w) == 0)
return INSIDE;
/* Point is somewhere in the filter region: */
return 0;
}
else /* Inside or outside the square by more than w+FILTER_WIDTH. */
return OUTSIDE;
}
/* "line",
* { NULL, NULL }, There is no 'filled' line.
* { inside_line, check_line }
*/
static int
line_check(double x, double y, double x1, double y1, double x2, double y2,
double w, double expand)
{
/* Shift all the points to (arg->x1, arg->y1) */
double lx = x2 - x1;
double ly = y2 - y1;
double len2 = lx*lx + ly*ly;
double cross, dot;
x -= x1;
y -= y1;
/* The dot product is the distance down the line, the cross product is
* the distance away from the line:
*
* distance = |cross| / sqrt(len2)
*/
cross = x * ly - y * lx;
/* If 'distance' is more than w the point is definitely outside the line:
*
* distance >= w
* |cross| >= w * sqrt(len2)
* cross^2 >= w^2 * len2:
*/
if (cross*cross >= (w+expand)*(w+expand)*len2)
return 0; /* outside */
/* Now find the distance *along* the line; this comes from the dot product
* lx.x+ly.y. The actual distance (in pixels) is:
*
* distance = dot / sqrt(len2)
*/
dot = lx * x + ly * y;
/* The test for 'outside' is:
*
* distance < 0 || distance > sqrt(len2)
* -> dot / sqrt(len2) > sqrt(len2)
* -> dot > len2
*
* But 'expand' is used for the filter width and needs to be handled too:
*/
return dot > -expand && dot < len2+expand;
}
static int
inside_line(const struct arg *arg, double x, double y)
{
return line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2, 0);
}
static int
check_line(const struct arg *arg, double x, double y)
{
/* The end caps of the line must be checked too; it's not enough just to
* widen the line by FILTER_WIDTH; 'expand' exists for this purpose:
*/
if (line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
FILTER_WIDTH))
{
/* Inside the line+filter; far enough inside that the filter isn't
* required?
*/
if (arg->width > 2*FILTER_WIDTH &&
line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
-FILTER_WIDTH))
return INSIDE;
return 0;
}
return OUTSIDE;
}
static const struct
{
const char *name;
shape_fn_ptr function[2/*fill,line*/][2];
# define FN_INSIDE 0
# define FN_CHECK 1
} shape_defs[] =
{
{ "square",
{ { inside_square_filled, check_square_filled },
{ inside_square, check_square } }
},
{ "circle",
{ { inside_circle_filled, check_circle_filled },
{ inside_circle, check_circle } }
},
{ "line",
{ { NULL, NULL },
{ inside_line, check_line } }
}
};
#define shape_count ((sizeof shape_defs)/(sizeof shape_defs[0]))
static shape_fn_ptr
shape_of(const char *arg, double width, int f)
{
unsigned int i;
for (i=0; i<shape_count; ++i) if (strcmp(shape_defs[i].name, arg) == 0)
{
shape_fn_ptr fn = shape_defs[i].function[width != 0][f];
if (fn != NULL)
return fn;
fprintf(stderr, "genpng: %s %s not supported\n",
width == 0 ? "filled" : "unfilled", arg);
exit(1);
}
fprintf(stderr, "genpng: %s: not a valid shape name\n", arg);
exit(1);
}
static void
parse_arg(struct arg *arg, const char **argv/*7 arguments*/)
{
/* shape ::= color width shape x1 y1 x2 y2 */
arg->color = color_of(argv[0]);
arg->width = width_of(argv[1]);
arg->inside_fn = shape_of(argv[2], arg->width, FN_INSIDE);
arg->check_fn = shape_of(argv[2], arg->width, FN_CHECK);
arg->x1 = coordinate_of(argv[3]);
arg->y1 = coordinate_of(argv[4]);
arg->x2 = coordinate_of(argv[5]);
arg->y2 = coordinate_of(argv[6]);
}
static png_uint_32
read_wh(const char *name, const char *str)
/* read a PNG width or height */
{
char *ep = NULL;
unsigned long ul = strtoul(str, &ep, 10);
if (ep != NULL && *ep == 0 && ul > 0 && ul <= 0x7fffffff)
return (png_uint_32)/*SAFE*/ul;
fprintf(stderr, "genpng: %s: invalid number %s\n", name, str);
exit(1);
}
static void
pixel(png_uint_16p p, struct arg *args, int nargs, double x, double y)
{
/* Fill in the pixel by checking each shape (args[nargs]) for effects on
* the corresponding sample:
*/
double r=0, g=0, b=0, a=0;
while (--nargs >= 0 && a != 1)
{
/* NOTE: alpha_calc can return a value outside the range 0..1 with the
* bicubic filter.
*/
const double alpha = alpha_calc(args+nargs, x, y) * (1-a);
r += alpha * args[nargs].color->red;
g += alpha * args[nargs].color->green;
b += alpha * args[nargs].color->blue;
a += alpha;
}
/* 'a' may be negative or greater than 1; if it is, negative clamp the
* pixel to 0 if >1 clamp r/g/b:
*/
if (a > 0)
{
if (a > 1)
{
if (r > 1) r = 1;
if (g > 1) g = 1;
if (b > 1) b = 1;
a = 1;
}
/* And fill in the pixel: */
p[0] = (png_uint_16)/*SAFE*/round(r * 65535);
p[1] = (png_uint_16)/*SAFE*/round(g * 65535);
p[2] = (png_uint_16)/*SAFE*/round(b * 65535);
p[3] = (png_uint_16)/*SAFE*/round(a * 65535);
}
else
p[3] = p[2] = p[1] = p[0] = 0;
}
int
main(int argc, const char **argv)
{
int convert_to_8bit = 0;
/* There is one option: --8bit: */
if (argc > 1 && strcmp(argv[1], "--8bit") == 0)
--argc, ++argv, convert_to_8bit = 1;
if (argc >= 3)
{
png_uint_16p buffer;
int nshapes;
png_image image;
# define max_shapes 256
struct arg arg_list[max_shapes];
/* The libpng Simplified API write code requires a fully initialized
* structure.
*/
memset(&image, 0, sizeof image);
image.version = PNG_IMAGE_VERSION;
image.opaque = NULL;
image.width = read_wh("width", argv[1]);
image.height = read_wh("height", argv[2]);
image.format = PNG_FORMAT_LINEAR_RGB_ALPHA;
image.flags = 0;
image.colormap_entries = 0;
/* Check the remainder of the arguments */
for (nshapes=0; 3+7*(nshapes+1) <= argc && nshapes < max_shapes;
++nshapes)
parse_arg(arg_list+nshapes, argv+3+7*nshapes);
if (3+7*nshapes != argc)
{
fprintf(stderr, "genpng: %s: too many arguments\n", argv[3+7*nshapes]);
return 1;
}
#if 1
/* TO do: determine whether this guard against overflow is necessary.
* This comment in png.h indicates that it should be safe: "libpng will
* refuse to process an image where such an overflow would occur", but
* I don't see where the image gets rejected when the buffer is too
* large before the malloc is attempted.
*/
if (image.height > ((size_t)(-1))/(8*image.width)) {
fprintf(stderr, "genpng: image buffer would be too big");
return 1;
}
#endif
/* Create the buffer: */
buffer = malloc(PNG_IMAGE_SIZE(image));
if (buffer != NULL)
{
png_uint_32 y;
/* Write each row... */
for (y=0; y<image.height; ++y)
{
png_uint_32 x;
/* Each pixel in each row: */
for (x=0; x<image.width; ++x)
pixel(buffer + 4*(x + y*image.width), arg_list, nshapes, x, y);
}
/* Write the result (to stdout) */
if (png_image_write_to_stdio(&image, stdout, convert_to_8bit,
buffer, 0/*row_stride*/, NULL/*colormap*/))
{
free(buffer);
return 0; /* success */
}
else
fprintf(stderr, "genpng: write stdout: %s\n", image.message);
free(buffer);
}
else
fprintf(stderr, "genpng: out of memory: %lu bytes\n",
(unsigned long)PNG_IMAGE_SIZE(image));
}
else
{
/* Wrong number of arguments */
fprintf(stderr, "genpng: usage: genpng [--8bit] width height {shape}\n"
" Generate a transparent PNG in RGBA (truecolor+alpha) format\n"
" containing the given shape or shapes. Shapes are defined:\n"
"\n"
" shape ::= color width shape x1 y1 x2 y2\n"
" color ::= black|white|red|green|yellow|blue\n"
" color ::= brown|purple|pink|orange|gray|cyan\n"
" width ::= filled|<number>\n"
" shape ::= circle|square|line\n"
" x1,x2 ::= <number>\n"
" y1,y2 ::= <number>\n"
"\n"
" Numbers are floating point numbers describing points relative to\n"
" the top left of the output PNG as pixel coordinates. The 'width'\n"
" parameter is either the width of the line (in output pixels) used\n"
" to draw the shape or 'filled' to indicate that the shape should\n"
" be filled with the color.\n"
"\n"
" Colors are interpreted loosely to give access to the eight full\n"
" intensity RGB values:\n"
"\n"
" black, red, green, blue, yellow, cyan, purple, white,\n"
"\n"
" Cyan is full intensity blue+green; RGB(0,1,1), plus the following\n"
" lower intensity values:\n"
"\n"
" brown: red+orange: RGB(0.5, 0.125, 0) (dark red+orange)\n"
" pink: red+white: RGB(1.0, 0.5, 0.5)\n"
" orange: red+yellow: RGB(1.0, 0.5, 0)\n"
" gray: black+white: RGB(0.5, 0.5, 0.5)\n"
"\n"
" The RGB values are selected to make detection of aliasing errors\n"
" easy. The names are selected to make the description of errors\n"
" easy.\n"
"\n"
" The PNG is written to stdout, if --8bit is given a 32bpp RGBA sRGB\n"
" file is produced, otherwise a 64bpp RGBA linear encoded file is\n"
" written.\n");
}
return 1;
}
#endif /* SIMPLIFIED_WRITE && STDIO */