mirror of
https://git.code.sf.net/p/libpng/code.git
synced 2025-07-10 18:04:09 +02:00

The LOW_MEMORY PNG_COMPRESSION option should not be setting HUFFMAN_ONLY or using a low deflate 'level'; according to the comments in zconf.h only windowBits and memLevel affect the memory. pngwutil.c has been changed to use the same values as HIGH compression. The COMPAT option turned on the old optimize_cmf code (now in fix_cinfo), however there was a serious bug in that code; it put the wrong value in z_cmf. The setting was also not handled correctly in pz_compression_settings. pngtest now verifies the operation of COMPAT and, as a result, pngtest.png has been reverted to the libpng 1.6 (etc) version. IDAT size handling has been improved; if not explicitly set values appropriate to png_level are now chosen (in addition to the handling for the COMPAT setting). HIGH and HIGH_READ_SPEED now create unlimited size IDAT chunks, which requires buffering the whole of the IDAT data in memory but reflects what other programs and optimizers do. Signed-off-by: John Bowler <jbowler@acm.org>
5045 lines
166 KiB
C
5045 lines
166 KiB
C
/* pngwutil.c - utilities to write a PNG file
|
|
*
|
|
* Last changed in libpng 1.7.0 [(PENDING RELEASE)]
|
|
* Copyright (c) 1998-2002,2004,2006-2016 Glenn Randers-Pehrson
|
|
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
|
|
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
|
|
*
|
|
* This code is released under the libpng license.
|
|
* For conditions of distribution and use, see the disclaimer
|
|
* and license in png.h
|
|
*/
|
|
|
|
#include "pngpriv.h"
|
|
#define PNG_SRC_FILE PNG_SRC_FILE_pngwutil
|
|
|
|
#ifdef PNG_WRITE_SUPPORTED
|
|
|
|
#ifdef PNG_WRITE_INT_FUNCTIONS_SUPPORTED
|
|
/* Place a 32-bit number into a buffer in PNG byte order. We work
|
|
* with unsigned numbers for convenience, although one supported
|
|
* ancillary chunk uses signed (two's complement) numbers.
|
|
*/
|
|
void PNGAPI
|
|
png_save_uint_32(png_bytep buf, png_uint_32 i)
|
|
{
|
|
buf[0] = PNG_BYTE(i >> 24);
|
|
buf[1] = PNG_BYTE(i >> 16);
|
|
buf[2] = PNG_BYTE(i >> 8);
|
|
buf[3] = PNG_BYTE(i);
|
|
}
|
|
|
|
/* Place a 16-bit number into a buffer in PNG byte order.
|
|
* The parameter is declared unsigned int, not png_uint_16,
|
|
* just to avoid potential problems on pre-ANSI C compilers.
|
|
*/
|
|
void PNGAPI
|
|
png_save_uint_16(png_bytep buf, unsigned int i)
|
|
{
|
|
buf[0] = PNG_BYTE(i >> 8);
|
|
buf[1] = PNG_BYTE(i);
|
|
}
|
|
#endif /* WRITE_INT_FUNCTIONS */
|
|
|
|
/* Simple function to write the signature. If we have already written
|
|
* the magic bytes of the signature, or more likely, the PNG stream is
|
|
* being embedded into another stream and doesn't need its own signature,
|
|
* we should call png_set_sig_bytes() to tell libpng how many of the
|
|
* bytes have already been written.
|
|
*/
|
|
void PNGAPI
|
|
png_write_sig(png_structrp png_ptr)
|
|
{
|
|
png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
|
|
|
|
#ifdef PNG_IO_STATE_SUPPORTED
|
|
/* Inform the I/O callback that the signature is being written */
|
|
png_ptr->io_state = PNG_IO_WRITING | PNG_IO_SIGNATURE;
|
|
#endif
|
|
|
|
/* Write the rest of the 8 byte signature */
|
|
png_write_data(png_ptr, &png_signature[png_ptr->sig_bytes],
|
|
(png_size_t)(8 - png_ptr->sig_bytes));
|
|
|
|
if (png_ptr->sig_bytes < 3)
|
|
png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE;
|
|
}
|
|
|
|
/* Write the start of a PNG chunk. The type is the chunk type.
|
|
* The total_length is the sum of the lengths of all the data you will be
|
|
* passing in png_write_chunk_data().
|
|
*/
|
|
static void
|
|
png_write_chunk_header(png_structrp png_ptr, png_uint_32 chunk_name,
|
|
png_uint_32 length)
|
|
{
|
|
png_byte buf[8];
|
|
|
|
#if defined(PNG_DEBUG) && (PNG_DEBUG > 0)
|
|
PNG_CSTRING_FROM_CHUNK(buf, chunk_name);
|
|
png_debug2(0, "Writing %s chunk, length = %lu", buf, (unsigned long)length);
|
|
#endif
|
|
|
|
if (png_ptr == NULL)
|
|
return;
|
|
|
|
#ifdef PNG_IO_STATE_SUPPORTED
|
|
/* Inform the I/O callback that the chunk header is being written.
|
|
* PNG_IO_CHUNK_HDR requires a single I/O call.
|
|
*/
|
|
png_ptr->io_state = PNG_IO_WRITING | PNG_IO_CHUNK_HDR;
|
|
#endif
|
|
|
|
/* Write the length and the chunk name */
|
|
png_save_uint_32(buf, length);
|
|
png_save_uint_32(buf + 4, chunk_name);
|
|
png_write_data(png_ptr, buf, 8);
|
|
|
|
/* Put the chunk name into png_ptr->chunk_name */
|
|
png_ptr->chunk_name = chunk_name;
|
|
|
|
/* Reset the crc and run it over the chunk name */
|
|
png_reset_crc(png_ptr, buf+4);
|
|
|
|
#ifdef PNG_IO_STATE_SUPPORTED
|
|
/* Inform the I/O callback that chunk data will (possibly) be written.
|
|
* PNG_IO_CHUNK_DATA does NOT require a specific number of I/O calls.
|
|
*/
|
|
png_ptr->io_state = PNG_IO_WRITING | PNG_IO_CHUNK_DATA;
|
|
#endif
|
|
}
|
|
|
|
void PNGAPI
|
|
png_write_chunk_start(png_structrp png_ptr, png_const_bytep chunk_string,
|
|
png_uint_32 length)
|
|
{
|
|
png_write_chunk_header(png_ptr, PNG_CHUNK_FROM_STRING(chunk_string), length);
|
|
}
|
|
|
|
/* Write the data of a PNG chunk started with png_write_chunk_header().
|
|
* Note that multiple calls to this function are allowed, and that the
|
|
* sum of the lengths from these calls *must* add up to the total_length
|
|
* given to png_write_chunk_header().
|
|
*/
|
|
void PNGAPI
|
|
png_write_chunk_data(png_structrp png_ptr, png_const_voidp data,
|
|
png_size_t length)
|
|
{
|
|
/* Write the data, and run the CRC over it */
|
|
if (png_ptr == NULL)
|
|
return;
|
|
|
|
if (data != NULL && length > 0)
|
|
{
|
|
png_write_data(png_ptr, data, length);
|
|
|
|
/* Update the CRC after writing the data,
|
|
* in case the user I/O routine alters it.
|
|
*/
|
|
png_calculate_crc(png_ptr, data, length);
|
|
}
|
|
}
|
|
|
|
/* Finish a chunk started with png_write_chunk_header(). */
|
|
void PNGAPI
|
|
png_write_chunk_end(png_structrp png_ptr)
|
|
{
|
|
png_byte buf[4];
|
|
|
|
if (png_ptr == NULL) return;
|
|
|
|
#ifdef PNG_IO_STATE_SUPPORTED
|
|
/* Inform the I/O callback that the chunk CRC is being written.
|
|
* PNG_IO_CHUNK_CRC requires a single I/O function call.
|
|
*/
|
|
png_ptr->io_state = PNG_IO_WRITING | PNG_IO_CHUNK_CRC;
|
|
#endif
|
|
|
|
/* Write the crc in a single operation */
|
|
png_save_uint_32(buf, png_ptr->crc);
|
|
|
|
png_write_data(png_ptr, buf, (png_size_t)4);
|
|
}
|
|
|
|
/* Write a PNG chunk all at once. The type is an array of ASCII characters
|
|
* representing the chunk name. The array must be at least 4 bytes in
|
|
* length, and does not need to be null terminated. To be safe, pass the
|
|
* pre-defined chunk names here, and if you need a new one, define it
|
|
* where the others are defined. The length is the length of the data.
|
|
* All the data must be present. If that is not possible, use the
|
|
* png_write_chunk_start(), png_write_chunk_data(), and png_write_chunk_end()
|
|
* functions instead.
|
|
*/
|
|
static void
|
|
png_write_complete_chunk(png_structrp png_ptr, png_uint_32 chunk_name,
|
|
png_const_voidp data, png_size_t length)
|
|
{
|
|
if (png_ptr == NULL)
|
|
return;
|
|
|
|
/* On 64 bit architectures 'length' may not fit in a png_uint_32. */
|
|
if (length > PNG_UINT_31_MAX)
|
|
png_error(png_ptr, "length exceeds PNG maximum");
|
|
|
|
png_write_chunk_header(png_ptr, chunk_name, (png_uint_32)/*SAFE*/length);
|
|
png_write_chunk_data(png_ptr, data, length);
|
|
png_write_chunk_end(png_ptr);
|
|
}
|
|
|
|
/* This is the API that calls the internal function above. */
|
|
void PNGAPI
|
|
png_write_chunk(png_structrp png_ptr, png_const_bytep chunk_string,
|
|
png_const_voidp data, png_size_t length)
|
|
{
|
|
png_write_complete_chunk(png_ptr, PNG_CHUNK_FROM_STRING(chunk_string), data,
|
|
length);
|
|
}
|
|
|
|
static png_alloc_size_t
|
|
png_write_row_buffer_size(png_const_structrp png_ptr)
|
|
/* Returns the width of the widest pass in the first row of an interlaced
|
|
* image. Passes in the first row are: 0.5.3.5.1.5.3.5, so the widest row is
|
|
* normally the one from pass 5. The only exception is if the image is only
|
|
* one pixel wide, so:
|
|
*/
|
|
#define PNG_FIRST_ROW_MAX_WIDTH(w) (w > 1U ? PNG_PASS_COLS(w, 5U) : 1U)
|
|
|
|
/* For interlaced images the count of pixels is rounded up to a the number of
|
|
* pixels in the first pass (numbered 0). This ensures that passes before
|
|
* the last can be packed in the buffer without overflow.
|
|
*/
|
|
{
|
|
png_alloc_size_t w;
|
|
|
|
/* If the image is interlaced adjust 'w' for the interlacing: */
|
|
if (png_ptr->interlaced != PNG_INTERLACE_NONE)
|
|
{
|
|
/* Take advantage of the fact that 1-row interlaced PNGs require half the
|
|
* normal row width:
|
|
*/
|
|
if (png_ptr->height == 1U) /* no pass 6 */
|
|
w = PNG_FIRST_ROW_MAX_WIDTH(png_ptr->width);
|
|
|
|
/* Otherwise round up to a multiple of 8. This may waste a few (less
|
|
* than 8) bytes for PNGs with a height less than 57 but this hardly
|
|
* matters.
|
|
*/
|
|
else
|
|
w = (png_ptr->width + 7U) & ~7U;
|
|
}
|
|
|
|
else
|
|
w = png_ptr->width;
|
|
|
|
/* The rounding above may leave 'w' exactly 2^31 */
|
|
debug(w <= 0x80000000U);
|
|
|
|
switch (png_ptr->row_output_pixel_depth)
|
|
{
|
|
/* This would happen if the function is called before png_write_IHDR. */
|
|
default: NOT_REACHED; return 0;
|
|
|
|
case 1: w = (w+7) >> 3; break;
|
|
case 2: w = (w+3) >> 2; break;
|
|
case 4: w = (w+1) >> 1; break;
|
|
case 8: break;
|
|
case 16: w <<= 1; break; /* overflow: w is set to 0, which is OK */
|
|
|
|
/* For the remaining cases the answer is w*bytes; where bytes is 3,4,6
|
|
* or 8. This may overflow 32 bits. There is no way to compute the
|
|
* result on an arbitrary platform, so test the maximum of a (size_t)
|
|
* against w for each possible byte depth:
|
|
*/
|
|
# define CASE(b)\
|
|
case b*8:\
|
|
if (w <= (PNG_SIZE_MAX/b)/*compile-time constant*/)\
|
|
return w * b;\
|
|
return 0;
|
|
|
|
CASE(3)
|
|
CASE(4)
|
|
CASE(6)
|
|
CASE(8)
|
|
|
|
# undef CASE
|
|
}
|
|
|
|
/* This is the low bit depth case. The following can never be false on
|
|
* systems with a 32-bit or greater size_t:
|
|
*/
|
|
if (w <= PNG_SIZE_MAX)
|
|
return w;
|
|
|
|
return 0U;
|
|
}
|
|
|
|
/* Release memory used by the deflate mechanism */
|
|
static void
|
|
png_deflateEnd(png_const_structrp png_ptr, z_stream *zs, int check)
|
|
{
|
|
if (zs->state != NULL)
|
|
{
|
|
int ret = deflateEnd(zs);
|
|
|
|
/* Z_DATA_ERROR means there was pending output. */
|
|
if ((ret != Z_OK && (check || ret != Z_DATA_ERROR)) || zs->state != NULL)
|
|
{
|
|
png_zstream_error(zs, ret);
|
|
|
|
if (check)
|
|
png_error(png_ptr, zs->msg);
|
|
|
|
else
|
|
png_warning(png_ptr, zs->msg);
|
|
|
|
zs->state = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* compression_buffer (new in 1.6.0) is just a linked list of temporary buffers. * From 1.6.0 it is retained in png_struct so that it will be correctly freed in
|
|
* the event of a write error (previous implementations just leaked memory.)
|
|
*
|
|
* From 1.7.0 the size is fixed to the same as the (uncompressed) row buffer
|
|
* size. This avoids allocating a large chunk of memory when compressing small
|
|
* images. This type is also opaque outside this file.
|
|
*/
|
|
typedef struct png_compression_buffer
|
|
{
|
|
struct png_compression_buffer *next;
|
|
png_byte output[PNG_ROW_BUFFER_SIZE];
|
|
} png_compression_buffer, *png_compression_bufferp;
|
|
|
|
/* png_compression_buffer methods */
|
|
/* Deleting a compression buffer deletes the whole list: */
|
|
static void
|
|
png_free_compression_buffer(png_const_structrp png_ptr,
|
|
png_compression_bufferp *listp)
|
|
{
|
|
png_compression_bufferp list = *listp;
|
|
|
|
if (list != NULL)
|
|
{
|
|
*listp = NULL;
|
|
|
|
do
|
|
{
|
|
png_compression_bufferp next = list->next;
|
|
|
|
png_free(png_ptr, list);
|
|
list = next;
|
|
}
|
|
while (list != NULL);
|
|
}
|
|
}
|
|
|
|
/* Return the next compression buffer in the list, allocating it if necessary.
|
|
* The caller must update 'end' if required; this just moves down the list.
|
|
*/
|
|
static png_compression_bufferp
|
|
png_get_compression_buffer(png_const_structrp png_ptr,
|
|
png_compression_bufferp *end)
|
|
{
|
|
png_compression_bufferp next = *end;
|
|
|
|
if (next == NULL)
|
|
{
|
|
next = png_voidcast(png_compression_bufferp, png_malloc_base(png_ptr,
|
|
sizeof *next));
|
|
|
|
/* Check for OOM: this is a recoverable error for non-critical chunks, let
|
|
* the caller decide what to do rather than issuing a png_error here.
|
|
*/
|
|
if (next != NULL)
|
|
{
|
|
next->next = NULL; /* initialize the buffer */
|
|
*end = next;
|
|
}
|
|
}
|
|
|
|
return next; /* may still be NULL on OOM */
|
|
}
|
|
|
|
/* This structure is used to hold all the data for zlib compression of a single
|
|
* stream of data. It may be re-used, it stores the compressed data internally
|
|
* and can handle arbitrary input and output.
|
|
*
|
|
* 'list' is the output data contained in compression buffers, 'end' points to
|
|
* list at the start and is advanced down the compression buffer list (extending
|
|
* it as required) as the data is written. If 'end' points into a compression
|
|
* buffer (does not point to 'list') that is the buffer in use in
|
|
* z_stream::{next,avail}_out.
|
|
*
|
|
* Compression may be performed in multiple steps, '*end' always points to the
|
|
* compression buffer *after* the one that is in use, so 'end' is pointing
|
|
* *into* the one in use.
|
|
*
|
|
* end(on entry) .... end ....... end(on exit)
|
|
* | | |
|
|
* | | |
|
|
* V +----V-----+ +-----V----+ +----------+
|
|
* list ---> | next --+--> | next --+--> | next |
|
|
* | output[] | | output[] | | output[] |
|
|
* +----------+ +----------+ +----------+
|
|
* [in use] [unused]
|
|
*
|
|
* These invariants should always hold:
|
|
*
|
|
* 1) If zs.state is NULL decompression is not in progress, list may be non-NULL
|
|
* but end could be anything;
|
|
*
|
|
* 2) Otherwise if zs.next_out is NULL list will be NULL and end will point at
|
|
* list, len, overflow and start will be 0;
|
|
*
|
|
* 3) Otherwise list is non-NULL and end points at the 'next' element of an
|
|
* in-use compression buffer. zs.next_out points into the 'output' element
|
|
* of the same buffer. {overflow, len} is the amount of compressed data, len
|
|
* being the low 31 bits, overflow being the higher bits. start is used for
|
|
* writing and is the index of the first byte in list->output to write,
|
|
* {overflow, len} does not include start.
|
|
*/
|
|
typedef struct
|
|
{
|
|
z_stream zs; /* zlib compression data */
|
|
png_compression_bufferp list; /* Head of the buffer list */
|
|
png_compression_bufferp *end; /* Pointer to last 'next' pointer */
|
|
png_uint_32 len; /* Bottom 31 bits of data length */
|
|
unsigned int overflow; /* Top bits of data length */
|
|
unsigned int start; /* Start of data in first block */
|
|
} png_zlib_compress, *png_zlib_compressp;
|
|
|
|
/* png_zlib_compress methods */
|
|
/* Initialize the compress structure. The z_stream itself is not initialized,
|
|
* however the the 'user' fields are set, including {next,avail}_{in,out}. The
|
|
* initialization does not change 'list', however it does set 'end' to point to
|
|
* it, effectively truncating the list.
|
|
*/
|
|
static void
|
|
png_zlib_compress_init(png_structrp png_ptr, png_zlib_compressp pz)
|
|
{
|
|
/* png_zlib_compress z_stream: */
|
|
pz->zs.zalloc = png_zalloc;
|
|
pz->zs.zfree = png_zfree;
|
|
/* NOTE: this does not destroy 'restrict' because in all the functions herein
|
|
* *png_ptr is only ever accessed via *either* pz->zs.opaque *or* a passed in
|
|
* png_ptr.
|
|
*/
|
|
pz->zs.opaque = png_ptr;
|
|
|
|
pz->zs.next_in = NULL;
|
|
pz->zs.avail_in = 0U;
|
|
pz->zs.total_in = 0U;
|
|
|
|
pz->zs.next_out = NULL;
|
|
pz->zs.avail_out = 0U;
|
|
pz->zs.total_out = 0U;
|
|
|
|
pz->zs.msg = PNGZ_MSG_CAST("zlib success"); /* safety */
|
|
|
|
/* pz->list preserved */
|
|
pz->end = &pz->list;
|
|
pz->len = 0U;
|
|
pz->overflow = 0U;
|
|
pz->start = 0U;
|
|
}
|
|
|
|
/* Return the png_ptr: this is defined here for all the remaining
|
|
* png_zlib_compress methods because they are only ever called with zs
|
|
* initialized.
|
|
*/
|
|
#define png_ptr png_voidcast(png_const_structrp, pz->zs.opaque)
|
|
|
|
#if PNG_RELEASE_BUILD
|
|
# define png_zlib_compress_validate(pz, in_use) ((void)0)
|
|
#else /* !RELEASE_BUILD */
|
|
static void
|
|
png_zlib_compress_validate(png_zlib_compressp pz, int in_use)
|
|
{
|
|
const uInt o_size = sizeof pz->list->output;
|
|
|
|
affirm(pz->end != NULL && (in_use || (pz->zs.next_in == NULL &&
|
|
pz->zs.avail_in == 0U && *pz->end == NULL)));
|
|
|
|
if (pz->overflow == 0U && pz->len == 0U && pz->start == 0U) /* empty */
|
|
{
|
|
affirm((pz->end == &pz->list && pz->zs.next_out == NULL
|
|
&& pz->zs.avail_out == 0U) ||
|
|
(pz->list != NULL && pz->end == &pz->list->next &&
|
|
pz->zs.next_out == pz->list->output &&
|
|
pz->zs.avail_out == o_size));
|
|
}
|
|
|
|
else /* not empty */
|
|
{
|
|
png_compression_bufferp *ep = &pz->list, list;
|
|
png_uint_32 o, l;
|
|
|
|
affirm(*ep != NULL && pz->zs.next_out != NULL);
|
|
|
|
/* Check the list length: */
|
|
o = pz->overflow;
|
|
l = pz->len;
|
|
affirm((l & 0x80000000U) == 0U && (o & 0x80000000U) == 0U);
|
|
|
|
do
|
|
{
|
|
list = *ep;
|
|
l -= o_size;
|
|
if (l & 0x80000000U) --o, l &= 0x7FFFFFFFU;
|
|
ep = &list->next;
|
|
}
|
|
while (ep != pz->end);
|
|
|
|
l += pz->start;
|
|
l += pz->zs.avail_out;
|
|
if (l & 0x80000000U) ++o, l &= 0x7FFFFFFFU;
|
|
|
|
affirm(o == 0U && l == 0U && pz->zs.next_out >= list->output &&
|
|
pz->zs.next_out + pz->zs.avail_out == list->output + o_size);
|
|
}
|
|
}
|
|
#endif /* !RELEASE_BUILD */
|
|
|
|
/* Destroy one zlib compress structure. */
|
|
static void
|
|
png_zlib_compress_destroy(png_zlib_compressp pz, int check)
|
|
{
|
|
/* If the 'opaque' pointer is NULL this png_zlib_compress was never
|
|
* initialized, so do nothing.
|
|
*/
|
|
if (png_ptr != NULL)
|
|
{
|
|
if (pz->zs.state != NULL)
|
|
{
|
|
if (check)
|
|
png_zlib_compress_validate(pz, 0/*in_use*/);
|
|
|
|
png_deflateEnd(png_ptr, &pz->zs, check);
|
|
}
|
|
|
|
pz->end = &pz->list; /* safety */
|
|
png_free_compression_buffer(png_ptr, &pz->list);
|
|
}
|
|
}
|
|
|
|
/* Ensure that space is available for output, returns the amount of space
|
|
* available, 0 on OOM. This updates pz->zs.avail_out (etc) as required.
|
|
*/
|
|
static uInt
|
|
png_zlib_compress_avail_out(png_zlib_compressp pz)
|
|
{
|
|
uInt avail_out = pz->zs.avail_out;
|
|
|
|
png_zlib_compress_validate(pz, 1/*in_use*/);
|
|
|
|
if (avail_out == 0U)
|
|
{
|
|
png_compression_bufferp next;
|
|
|
|
affirm(pz->end == &pz->list || (pz->end != NULL && pz->list != NULL));
|
|
next = png_get_compression_buffer(png_ptr, pz->end);
|
|
|
|
if (next != NULL)
|
|
{
|
|
pz->zs.next_out = next->output;
|
|
pz->zs.avail_out = avail_out = sizeof next->output;
|
|
pz->end = &next->next;
|
|
}
|
|
|
|
/* else return 0: OOM */
|
|
}
|
|
|
|
else
|
|
affirm(pz->end != NULL && pz->list != NULL);
|
|
|
|
return avail_out;
|
|
}
|
|
|
|
/* Compress the given data given an initialized png_zlib_compress structure.
|
|
* This may be called multiple times, interleaved with writes as required.
|
|
*
|
|
* The input data is passed in in pz->zs.next_in, however the length of the data
|
|
* is in 'input_len' (to avoid the zlib uInt limit) and pz->zs.avail_in is
|
|
* overwritten (and left at 0).
|
|
*
|
|
* The output information is used and the amount of compressed data is added on
|
|
* to pz->{overflow,len}.
|
|
*
|
|
* If 'limit' is a limit on the amount of data to add to the output (not the
|
|
* total amount). The function will retun Z_BUF_ERROR if the limit is reached
|
|
* and the function will never produce more (additional) compressed data than
|
|
* the limit.
|
|
*
|
|
* All of zstream::next_in[input] is consumed if a success code is returned
|
|
* (Z_OK or Z_STREAM_END if flush is Z_FINISH), otherwise next_in may be used to
|
|
* determine how much was compressed.
|
|
*
|
|
* pz->overflow is not checked for overflow, so if 'limit' is not set overflow
|
|
* is possible. The caller must guard against this when supplying a limit of 0.
|
|
*/
|
|
static int
|
|
png_compress(
|
|
png_zlib_compressp pz,
|
|
png_alloc_size_t input_len, /* Length of data to be compressed */
|
|
png_uint_32 limit, /* Limit on amount of compressed data made */
|
|
int flush) /* Flush parameter at end of input */
|
|
{
|
|
const int unlimited = (limit == 0U);
|
|
|
|
/* Sanity checking: */
|
|
affirm(pz->zs.state != NULL &&
|
|
(pz->zs.next_out == NULL
|
|
? pz->end == &pz->list && pz->len == 0U && pz->overflow == 0U
|
|
: pz->list != NULL && pz->end != NULL));
|
|
implies(pz->zs.next_out == NULL, pz->zs.avail_out == 0);
|
|
|
|
for (;;)
|
|
{
|
|
uInt extra;
|
|
|
|
/* OUTPUT: make sure some space is available: */
|
|
if (png_zlib_compress_avail_out(pz) == 0U)
|
|
return Z_MEM_ERROR;
|
|
|
|
/* INPUT: limit the deflate call input to ZLIB_IO_MAX: */
|
|
/* Adjust the input counters: */
|
|
{
|
|
uInt avail_in = ZLIB_IO_MAX;
|
|
|
|
if (avail_in > input_len)
|
|
avail_in = (uInt)/*SAFE*/input_len;
|
|
|
|
input_len -= avail_in;
|
|
pz->zs.avail_in = avail_in;
|
|
}
|
|
|
|
if (!unlimited && pz->zs.avail_out > limit)
|
|
{
|
|
extra = (uInt)/*SAFE*/(pz->zs.avail_out - limit); /* unused bytes */
|
|
pz->zs.avail_out = (uInt)/*SAFE*/limit;
|
|
limit = 0U;
|
|
}
|
|
|
|
else
|
|
{
|
|
extra = 0U;
|
|
limit -= pz->zs.avail_out; /* limit >= 0U */
|
|
}
|
|
|
|
pz->len += pz->zs.avail_out; /* maximum that can be produced */
|
|
|
|
/* Compress the data */
|
|
{
|
|
int ret = deflate(&pz->zs, input_len > 0U ? Z_NO_FLUSH : flush);
|
|
|
|
/* Claw back input data that was not consumed (because avail_in is
|
|
* reset above every time round the loop) and correct the output
|
|
* length.
|
|
*/
|
|
input_len += pz->zs.avail_in;
|
|
pz->zs.avail_in = 0; /* safety */
|
|
pz->len -= pz->zs.avail_out;
|
|
|
|
if (pz->len & 0x80000000U)
|
|
++pz->overflow, pz->len &= 0x7FFFFFFFU;
|
|
|
|
limit += pz->zs.avail_out;
|
|
pz->zs.avail_out += extra;
|
|
|
|
/* Check the error code: */
|
|
switch (ret)
|
|
{
|
|
case Z_OK:
|
|
if (pz->zs.avail_out > extra)
|
|
{
|
|
/* zlib had output space, so all the input should have been
|
|
* consumed:
|
|
*/
|
|
affirm(input_len == 0U /* else unexpected stop */ &&
|
|
flush != Z_FINISH/* ret != Z_STREAM_END */);
|
|
return Z_OK;
|
|
}
|
|
|
|
else
|
|
{
|
|
/* zlib ran out of output space, produce some more. If the
|
|
* limit is 0 at this point, however, no more space is
|
|
* available.
|
|
*/
|
|
if (unlimited || limit > 0U)
|
|
break; /* Allocate more output */
|
|
|
|
/* No more output space available, but the input may have all
|
|
* been consumed.
|
|
*/
|
|
if (input_len == 0U && flush != Z_FINISH)
|
|
return Z_OK;
|
|
|
|
/* Input all consumed, but insufficient space to flush the
|
|
* output; this is the Z_BUF_ERROR case.
|
|
*/
|
|
return Z_BUF_ERROR;
|
|
}
|
|
|
|
case Z_STREAM_END:
|
|
affirm(input_len == 0U && flush == Z_FINISH);
|
|
return Z_STREAM_END;
|
|
|
|
case Z_BUF_ERROR:
|
|
/* This means that we are flushing all the output; expect
|
|
* avail_out and input_len to be 0.
|
|
*
|
|
* NOTE: if png_compress is called with input_len 0 and flush set
|
|
* to Z_NO_FLUSH this affirm will fire because zlib will have no
|
|
* work to do.
|
|
*/
|
|
affirm(input_len == 0U && pz->zs.avail_out == extra);
|
|
/* Allocate another buffer */
|
|
break;
|
|
|
|
default:
|
|
/* An error */
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef png_ptr /* remove definition using a png_zlib_compressp */
|
|
|
|
/* All the compression state is held here, it is allocated when required. This
|
|
* ensures that the read code doesn't carry the overhead of the much less
|
|
* frequently used write stuff.
|
|
*
|
|
* TODO: make png_create_write_struct allocate this stuff after the main
|
|
* png_struct.
|
|
*/
|
|
struct filter_selector; /* Used only for filter selection */
|
|
|
|
typedef struct png_zlib_state
|
|
{
|
|
png_zlib_compress s; /* Primary compression state */
|
|
png_compression_bufferp stash; /* Unused compression buffers */
|
|
|
|
# define ps_png_ptr(ps) png_upcast(png_const_structrp, (ps)->s.zs.opaque)
|
|
/* A png_ptr, used below in functions that only have a png_zlib_state.
|
|
* NOTE: the png_zlib_compress must have been initialized!
|
|
*/
|
|
|
|
png_uint_32 zlib_max_pixels;
|
|
/* Maximum number of pixels that zlib can handle at once; the lesser of
|
|
* the PNG maximum and the maximum that will fit in (uInt)-1 bytes. This
|
|
* number of pixels may not be byte aligned.
|
|
*/
|
|
png_uint_32 zlib_max_aligned_pixels;
|
|
/* The maximum number of pixels that zlib can handle while maintaining a
|
|
* buffer byte alignment of PNG_ROW_BUFFER_BYTE_ALIGN; <= the previous
|
|
* value.
|
|
*/
|
|
|
|
png_alloc_size_t write_row_size;
|
|
/* Size of the PNG row (without the filter byte) in bytes or 0 if it is
|
|
* too large to be cached.
|
|
*/
|
|
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
/* During write libpng needs the previous row when writing a new row with
|
|
* up, avg or paeth and one or more image rows when performing filter
|
|
* selection. So if performing filter selection typically two or more
|
|
* rows are required while if no filter selection is to be done only the
|
|
* previous row pointer is required.
|
|
*/
|
|
png_bytep previous_write_row; /* Last row written, if any */
|
|
# ifdef PNG_SELECT_FILTER_SUPPORTED
|
|
png_bytep current_write_row; /* Row being written */
|
|
struct filter_selector *selector; /* Data for filter selection */
|
|
png_uint_32 filter_select_window;
|
|
/* The number of bytes of uncompressed PNG data which are assumed to
|
|
* be relevant when doing filter selection. Limited to 8453377
|
|
* (about 2^23); the maximum number of bytes that can be encoded in
|
|
* the largest deflate window.
|
|
*/
|
|
# define PNG_FILTER_SELECT_WINDOW_MAX 8453377U
|
|
png_byte filter_select_threshold;
|
|
/* If the number of distinct codes seen in the PNG data are below
|
|
* this threshold the PNG data will not be filtered (if the 'none'
|
|
* filter is allowed). If this is still true and a particular
|
|
* filter does not add new codes that filter will be used.
|
|
*/
|
|
png_byte filter_select_threshold2;
|
|
/* If the number of distinct codes that result by using a particular
|
|
* filter is below this second threshold that filter will be used.
|
|
* (When multiple filters pass this criterion the lowest numbered
|
|
* one producing the lowest number of new codes will be
|
|
* chosen.)
|
|
*/
|
|
# endif /* SELECT_FILTER */
|
|
|
|
unsigned int row_buffer_max_pixels;
|
|
/* The maximum number of pixels that can fit in PNG_ROW_BUFFER_SIZE
|
|
* bytes; not necessary a whole number of bytes.
|
|
*/
|
|
unsigned int row_buffer_max_aligned_pixels;
|
|
/* The maximum number of pixels that can fit in PNG_ROW_BUFFER_SIZE
|
|
* bytes while maintaining PNG_ROW_BUFFER_BYTE_ALIGN alignment.
|
|
*/
|
|
|
|
unsigned int filter_mask :8; /* mask of filters to consider on NEXT row */
|
|
# define PREVIOUS_ROW_FILTERS\
|
|
(PNG_FILTER_UP|PNG_FILTER_AVG|PNG_FILTER_PAETH)
|
|
unsigned int filters :8; /* Filters for current row */
|
|
unsigned int save_row :2; /* As below: */
|
|
# define SAVE_ROW_UNSET 0U
|
|
# define SAVE_ROW_OFF 1U /* Previous-row filters will be ignored */
|
|
# define SAVE_ROW_DEFAULT 2U /* Default to save rows set by libpng */
|
|
# define SAVE_ROW_ON 3U /* Force rows to be saved */
|
|
# define SAVE_ROW(ps) ((ps)->save_row >= SAVE_ROW_DEFAULT)
|
|
# endif /* WRITE_FILTER */
|
|
|
|
/* Compression settings: see below for how these are encoded. */
|
|
png_uint_32 pz_IDAT; /* Settings for the image */
|
|
png_uint_32 pz_iCCP; /* Settings for iCCP chunks */
|
|
png_uint_32 pz_text; /* Settings for text chunks */
|
|
png_uint_32 pz_current; /* Last set settings */
|
|
|
|
# ifdef PNG_WRITE_FLUSH_SUPPORTED
|
|
png_uint_32 flush_dist; /* how many rows apart to flush, 0 - no flush */
|
|
png_uint_32 flush_rows; /* number of rows written since last flush */
|
|
# endif /* WRITE_FLUSH */
|
|
} png_zlib_state;
|
|
|
|
/* Create the zlib state: */
|
|
static void
|
|
png_create_zlib_state(png_structrp png_ptr)
|
|
{
|
|
png_zlib_statep ps = png_voidcast(png_zlib_state*,
|
|
png_malloc(png_ptr, sizeof *ps));
|
|
|
|
/* Clear to NULL/0: */
|
|
memset(ps, 0, sizeof *ps);
|
|
|
|
debug(png_ptr->zlib_state == NULL);
|
|
png_ptr->zlib_state = ps;
|
|
png_zlib_compress_init(png_ptr, &ps->s);
|
|
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
ps->previous_write_row = NULL;
|
|
# ifdef PNG_SELECT_FILTER_SUPPORTED
|
|
ps->current_write_row = NULL;
|
|
ps->selector = NULL;
|
|
# endif /* SELECT_FILTER */
|
|
# endif /* WRITE_FILTER */
|
|
# ifdef PNG_WRITE_FLUSH_SUPPORTED
|
|
/* Set this to prevent flushing by making it larger than the number
|
|
* of rows in the largest interlaced PNG; PNG_UINT_31_MAX times
|
|
* (1/8+1/8+1/8+1/4+1/4+1/2+1/2); 1.875, or 15/8
|
|
*/
|
|
ps->flush_dist = 0xEFFFFFFFU;
|
|
# endif /* WRITE_FLUSH */
|
|
}
|
|
|
|
static void
|
|
png_zlib_state_set_buffer_limits(png_const_structrp png_ptr, png_zlib_statep ps)
|
|
/* Delayed initialization of the zlib state maxima; this is not done above in
|
|
* case the zlib_state is created before the IHDR has been written, which
|
|
* would lead to the various png_struct fields used below being
|
|
* uninitialized.
|
|
*/
|
|
{
|
|
/* Initialization of the buffer size constants. */
|
|
const unsigned int bpp = PNG_PIXEL_DEPTH(*png_ptr);
|
|
const unsigned int byte_pp = bpp >> 3; /* May be 0 */
|
|
const unsigned int pixel_block =
|
|
/* Number of pixels required to maintain PNG_ROW_BUFFER_BYTE_ALIGN
|
|
* alignment. For multi-byte pixels use the first set bit to determine
|
|
* if the pixels have a greater alignment already.
|
|
*/
|
|
bpp < 8U ?
|
|
PNG_ROW_BUFFER_BYTE_ALIGN * (8U/bpp) :
|
|
PNG_ROW_BUFFER_BYTE_ALIGN <= (byte_pp & -byte_pp) ?
|
|
1U :
|
|
PNG_ROW_BUFFER_BYTE_ALIGN / (byte_pp & -byte_pp);
|
|
|
|
/* pixel_block must always be a power of two: */
|
|
debug(bpp > 0 && pixel_block > 0 &&
|
|
(pixel_block & -pixel_block) == pixel_block &&
|
|
((8U*PNG_ROW_BUFFER_BYTE_ALIGN-1U) & (pixel_block*bpp)) == 0U);
|
|
|
|
/* Zlib maxima */
|
|
{
|
|
png_uint_32 max = (uInt)-1; /* max bytes */
|
|
|
|
if (bpp <= 8U)
|
|
{
|
|
/* Maximum number of bytes PNG can generate in the lower bit depth
|
|
* cases:
|
|
*/
|
|
png_uint_32 png_max =
|
|
(0x7FFFFFFF + PNG_ADDOF(bpp)) >> PNG_SHIFTOF(bpp);
|
|
|
|
if (png_max < max)
|
|
max = 0x7FFFFFFF;
|
|
}
|
|
|
|
else /* bpp > 8U */
|
|
{
|
|
max /= byte_pp;
|
|
if (max > 0x7FFFFFFF)
|
|
max = 0x7FFFFFFF;
|
|
}
|
|
|
|
/* So this is the maximum number of pixels regardless of alignment: */
|
|
ps->zlib_max_pixels = max;
|
|
|
|
/* For byte alignment the value has to be a multiple of pixel_block and
|
|
* that is a power of 2, so:
|
|
*/
|
|
ps->zlib_max_aligned_pixels = max & ~(pixel_block-1U);
|
|
}
|
|
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
/* PNG_ROW_BUFFER maxima; this is easier because PNG_ROW_BUFFER_SIZE is
|
|
* limited so that the number of bits fits in any ANSI-C (unsigned int).
|
|
*/
|
|
{
|
|
const unsigned int max = (8U * PNG_ROW_BUFFER_SIZE) / bpp;
|
|
|
|
ps->row_buffer_max_pixels = max;
|
|
ps->row_buffer_max_aligned_pixels = max & ~(pixel_block-1U);
|
|
}
|
|
# endif /* WRITE_FILTER */
|
|
|
|
/* NOTE: this will be 0 for very long rows on 32-bit or less systems */
|
|
ps->write_row_size = png_write_row_buffer_size(png_ptr);
|
|
}
|
|
|
|
static png_zlib_statep
|
|
get_zlib_state(png_structrp png_ptr)
|
|
{
|
|
if (png_ptr->zlib_state == NULL)
|
|
png_create_zlib_state(png_ptr);
|
|
|
|
return png_ptr->zlib_state;
|
|
}
|
|
|
|
/* Internal API to clean up all the deflate related stuff, including the buffer
|
|
* lists.
|
|
*/
|
|
static void /* PRIVATE */
|
|
png_deflate_release(png_structrp png_ptr, png_zlib_statep ps, int check)
|
|
{
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
/* Free any mode-specific data that is owned here: */
|
|
if (ps->previous_write_row != NULL)
|
|
{
|
|
png_bytep p = ps->previous_write_row;
|
|
ps->previous_write_row = NULL;
|
|
png_free(png_ptr, p);
|
|
}
|
|
|
|
# ifdef PNG_SELECT_FILTER_SUPPORTED
|
|
if (ps->current_write_row != NULL)
|
|
{
|
|
png_bytep p = ps->current_write_row;
|
|
ps->current_write_row = NULL;
|
|
png_free(png_ptr, p);
|
|
}
|
|
|
|
if (ps->selector != NULL)
|
|
{
|
|
struct filter_selector *s = ps->selector;
|
|
ps->selector = NULL;
|
|
png_free(png_ptr, s);
|
|
}
|
|
# endif /* SELECT_FILTER */
|
|
# endif /* WRITE_FILTER */
|
|
|
|
/* The main z_stream opaque pointer needs to remain set to png_ptr; it is
|
|
* only set once.
|
|
*/
|
|
png_zlib_compress_destroy(&ps->s, check);
|
|
png_free_compression_buffer(png_ptr, &ps->stash);
|
|
}
|
|
|
|
void /* PRIVATE */
|
|
png_deflate_destroy(png_structrp png_ptr)
|
|
{
|
|
png_zlib_statep ps = png_ptr->zlib_state;
|
|
|
|
if (ps != NULL)
|
|
{
|
|
png_deflate_release(png_ptr, ps, 0/*check*/);
|
|
png_ptr->zlib_state = NULL;
|
|
png_free(png_ptr, ps);
|
|
}
|
|
}
|
|
|
|
/* Compression settings.
|
|
*
|
|
* These are stored packed into a png_uint_32 to make comparison with the
|
|
* current setting quick. The packing method uses four bits for each setting
|
|
* and reserves '0' for unset.
|
|
*
|
|
* ps_<setting>_base: The lowest valid value (encoded as 1).
|
|
* ps_<setting>_max: The highest valid value.
|
|
* ps_<setting>_pos: The position in the range 0..3 (shift of 0..12).
|
|
*
|
|
* The low 16 bits are the zlib compression parameters:
|
|
*/
|
|
#define pz_level_base (-1)
|
|
#define pz_level_max 9
|
|
#define pz_level_pos 0
|
|
#define pz_windowBits_base 8
|
|
#define pz_windowBits_max 15
|
|
#define pz_windowBits_pos 1
|
|
#define pz_memLevel_base 1
|
|
#define pz_memLevel_max 9
|
|
#define pz_memLevel_pos 2
|
|
#define pz_strategy_base 0
|
|
#define pz_strategy_max 4
|
|
#define pz_strategy_pos 3
|
|
#define pz_zlib_bits 0xFFFFU
|
|
/* Anything below this is not used directly by zlib: */
|
|
#define pz_png_level_base 0
|
|
#define pz_png_level_max 6
|
|
#define pz_png_level_pos 4
|
|
|
|
#define pz_offset(name) (pz_ ## name ## _base - 1)
|
|
/* setting_value == pz_offset(setting)+encoded_value */
|
|
#define pz_min(name) pz_ ## name ## _base
|
|
#define pz_max(name) pz_ ## name ## _max
|
|
#define pz_shift(name) (4 * pz_ ## name ## _pos)
|
|
|
|
#define pz_bits(name,x) ((int)(((x)>>pz_shift(name))&0xF))
|
|
/* the encoded value, or 0 if unset */
|
|
|
|
/* Enquiries: */
|
|
#define pz_isset(name,x) (pz_bits(name,x) != 0)
|
|
#define pz_value(name,x) (pz_bits(name,x)+pz_offset(name))
|
|
|
|
/* Assignments: */
|
|
#define pz_clear(name,x) ((x)&~((png_uint_32)0xFU<<pz_shift(name)))
|
|
#define pz_encode(name,v) ((png_uint_32)((v)-pz_offset(name))<<pz_shift(name))
|
|
#define pz_change(name,x,v) (pz_clear(name,x) | pz_encode(name, v))
|
|
|
|
/* Direct use/modification: */
|
|
#define pz_var(ps, type) ((ps)->pz_ ## type)
|
|
#define pz_get(ps, type, name, def)\
|
|
(pz_isset(name, pz_var(ps, type)) ? pz_value(name, pz_var(ps, type)) : (def))
|
|
/* pz_assign checks for out-of-range values and clears the setting if these are
|
|
* given. No warning or error is generated.
|
|
*/
|
|
#define pz_assign(ps, type, name, value)\
|
|
(pz_var(ps, type) = pz_clear(name, pz_var(ps, type)) |\
|
|
((value) >= pz_min(name) && (value) <= pz_max(name) ?\
|
|
pz_encode(name, value) : 0))
|
|
|
|
static png_int_32
|
|
pz_compression_setting(png_structrp png_ptr, png_uint_32 owner,
|
|
int min, int max, int shift, png_int_32 value, int only_get, int unset)
|
|
/* This is a support function for png_write_setting below. */
|
|
{
|
|
png_zlib_statep ps;
|
|
png_uint_32p psettings;
|
|
|
|
/* The value is only required for a 'set', eliminate out-of-range values
|
|
* first:
|
|
*/
|
|
if (!only_get && (value < min || value > max))
|
|
return PNG_EDOM;
|
|
|
|
/* If setting a value make sure the state exists: */
|
|
if (!only_get)
|
|
ps = get_zlib_state(png_ptr);
|
|
|
|
else if (owner != 0U) /* ps may be NULL */
|
|
ps = png_ptr->zlib_state;
|
|
|
|
else /* get and owner is 0U */
|
|
return 0; /* supported */
|
|
|
|
psettings = NULL;
|
|
switch (owner)
|
|
{
|
|
png_int_32 res;
|
|
|
|
case png_IDAT:
|
|
if (ps != NULL) psettings = &ps->pz_IDAT;
|
|
break;
|
|
|
|
case png_iCCP:
|
|
if (ps != NULL) psettings = &ps->pz_iCCP;
|
|
break;
|
|
|
|
case 0U:
|
|
/* All the settings. At this point the 'get' case has returned 0
|
|
* above, the value has been checked and the paramter is 0, therefore
|
|
* valid. Each of the following calls should succeed and it would be
|
|
* reasonable to eliminate the PNG_FAILED tests in a world where
|
|
* software engineers never made mistakes.
|
|
*/
|
|
res = pz_compression_setting(png_ptr, png_IDAT, min, max, shift,
|
|
value, 0/*set*/, 1/*iff unset*/);
|
|
|
|
if (PNG_FAILED(res))
|
|
return res;
|
|
|
|
res = pz_compression_setting(png_ptr, png_iCCP, min, max, shift,
|
|
value, 0/*set*/, 1/*iff unset*/);
|
|
|
|
if (PNG_FAILED(res))
|
|
return res;
|
|
|
|
/* The text settings are changed regardless of the customize support
|
|
* because if WRITE_CUSTOMIZE_ZTXT_COMPRESSION is not supported the old
|
|
* behavior was to use the WRITE_CUSTOMIZE_COMPRESSION setting.
|
|
*
|
|
* However, when we get png_zTXt directly (from png_write_setting) and
|
|
* the support is not compiled in return PNG_ENOSYS.
|
|
*/
|
|
unset = 1; /* i.e. only if not already set */
|
|
|
|
# ifdef PNG_WRITE_CUSTOMIZE_ZTXT_COMPRESSION_SUPPORTED
|
|
case png_zTXt:
|
|
case png_iTXt:
|
|
# endif /* WRITE_CUSTOMIZE_ZTXT_COMPRESSION */
|
|
if (ps != NULL) psettings = &ps->pz_text;
|
|
break;
|
|
|
|
default:
|
|
/* Return PNG_ENOSYS, not PNG_EINVAL, to support future addition of new
|
|
* compressed chunks and the fact that zTXt and iTXt customization can
|
|
* be disabled.
|
|
*/
|
|
return PNG_ENOSYS;
|
|
}
|
|
|
|
if (psettings == NULL)
|
|
return PNG_UNSET; /* valid setting that is not set */
|
|
|
|
{
|
|
png_uint_32 settings = *psettings;
|
|
png_uint_32 mask = 0xFU << shift;
|
|
|
|
/* Do not set it if 'only_get' was passed in or if 'unset' is true and the
|
|
* setting is not currently set:
|
|
*/
|
|
if (!only_get && ((settings & mask) == 0U || !unset))
|
|
*psettings = (settings & ~mask) +
|
|
((png_uint_32)/*SAFE*/(value-min+1) << shift);
|
|
|
|
settings &= mask;
|
|
|
|
if (settings == 0U)
|
|
return PNG_UNSET;
|
|
|
|
else
|
|
return (int)/*SAFE*/((settings >> shift)-1U) + min;
|
|
}
|
|
}
|
|
|
|
#define compression_setting(pp, owner, setting, value, get)\
|
|
pz_compression_setting(pp, owner, pz_min(setting), pz_max(setting),\
|
|
pz_shift(setting), value, get, 0/*always*/)
|
|
|
|
/* There is (as of zlib 1.2.8) a bug in the implementation of compression with a
|
|
* window size of 256 which zlib works round by resetting windowBits from 8 to 9
|
|
* whenever deflateInit2 is called with that value. Fix this up here.
|
|
*/
|
|
static void
|
|
fix_cinfo(png_zlib_statep ps, png_bytep data, png_alloc_size_t data_size)
|
|
{
|
|
/* Do this if the CINFO field is '1', meaning windowBits of 9. The first
|
|
* byte of the stream is the CMF value, CINFO is in the upper four bits.
|
|
*
|
|
* If zlib didn't futz with the value then it should match the value in
|
|
* pz_current; check this is debug. (See below for why this works in the
|
|
* pz_default_settings call.)
|
|
*/
|
|
# define png_ptr png_voidcast(png_const_structrp, ps->s.zs.opaque)
|
|
if (data[0] == 0x18U &&
|
|
pz_get(ps, current, windowBits, 0) == 8 /* i.e. it was requested */)
|
|
{
|
|
/* Double check this here; the fixup only works if the data was 256 bytes
|
|
* or shorter *or* the window is never used. For safety repeat the checks
|
|
* done in pz_default_settings; technically we should be able to just skip
|
|
* this test.
|
|
*
|
|
* TODO: set a 'fixup' flag in zlib_state to make this quicker?
|
|
*/
|
|
if (data_size <= 256U ||
|
|
pz_get(ps, current, strategy, Z_RLE) == Z_HUFFMAN_ONLY ||
|
|
pz_get(ps, current, level, 1) == Z_NO_COMPRESSION)
|
|
{
|
|
unsigned int d1;
|
|
|
|
data[0] = 0x08U;
|
|
/* The header checksum must be fixed too. The FCHECK (low 5 bits) make
|
|
* CMF.FLG a multiple of 31:
|
|
*/
|
|
d1 = data[1] & 0xE0U; /* top three bits */
|
|
d1 += 31U - (0x0800U + d1) % 31U;
|
|
data[1] = PNG_BYTE(d1);
|
|
}
|
|
|
|
else /* pz_default_settings is expected to guarantee the above */
|
|
NOT_REACHED;
|
|
}
|
|
|
|
else if (data_size > 0U)
|
|
{
|
|
/* Prior to 1.7.0 libpng would shrink the windowBits even if the
|
|
* application requested a particular value, so:
|
|
*/
|
|
unsigned int z_cinfo = data[0] >> 4;
|
|
unsigned int half_z_window_size = 1U << (z_cinfo + 7);
|
|
|
|
if (data_size <= half_z_window_size && z_cinfo > 0)
|
|
{
|
|
unsigned int tmp;
|
|
|
|
do
|
|
{
|
|
half_z_window_size >>= 1;
|
|
--z_cinfo;
|
|
}
|
|
while (z_cinfo > 0 && data_size <= half_z_window_size);
|
|
|
|
data[0] = PNG_BYTE((z_cinfo << 4) + 0x8U);
|
|
tmp = data[1] & 0xE0U; /* top three bits */
|
|
tmp += 31U - ((data[0] << 8) + tmp) % 31U;
|
|
data[1] = PNG_BYTE(tmp);
|
|
}
|
|
}
|
|
|
|
else
|
|
NOT_REACHED; /* invalid data size (0) */
|
|
# undef png_ptr
|
|
}
|
|
|
|
static png_uint_32
|
|
pz_default_settings(png_uint_32 settings, const png_uint_32 owner,
|
|
const png_alloc_size_t data_size, const unsigned int filters/*for IDAT*/)
|
|
{
|
|
int png_level, strategy, zlib_level, windowBits;
|
|
|
|
/* The png 'level' parameter controls the defaults below. It uses the same
|
|
* numbering scheme as the Zlib compression level except that -1 invokes the
|
|
* set of options and, in some cases, libpng behavior of libpng 1.6 and
|
|
* earlier.
|
|
*
|
|
* In the comments below reference is made to the differences beteen the
|
|
* legacy compression sizes from libpng 1.6 and earlier and the result of
|
|
* using the various options. These are quoted as an overall size change in
|
|
* the compression of 147323 PNG test files. The set of test files is
|
|
* slightly restricted because pre-1.7 versions of png_read_png leave random
|
|
* bits into the final byte of a row which ends with a partial byte. This
|
|
* affects the compression unpredictably so such files were omitted from the
|
|
* measurements.
|
|
*/
|
|
if (!pz_isset(png_level, settings))
|
|
{
|
|
png_level = PNG_DEFAULT_COMPRESSION_LEVEL;
|
|
settings |= pz_encode(png_level, png_level);
|
|
}
|
|
|
|
else
|
|
png_level = pz_value(png_level, settings);
|
|
|
|
/* First default the strategy. At lower data sizes other strategies do as
|
|
* well as the zlib default compression strategy but they never seem to
|
|
* improve on it with the 1.7 filtering.
|
|
*/
|
|
if (!pz_isset(strategy, settings))
|
|
{
|
|
switch (png_level)
|
|
{
|
|
case PNG_COMPRESSION_COMPAT: /* Legacy setting */
|
|
/* The pre-1.7 code used Z_FILTERED normally but uses
|
|
* Z_DEFAULT_STRATEGY for palette or low-bit-depth images.
|
|
*
|
|
* In fact Z_DEFAULT_STRATEGY works best for filtered images as
|
|
* well, however the change in results is small:
|
|
*
|
|
* Z_DEFAULT_STRATEGY: -0.1%
|
|
* Z_FILTERED: +0.1%
|
|
*
|
|
* NOTE: this happened even if WRITE_FILTER was *not* supported.
|
|
*/
|
|
if (owner != png_IDAT || filters == PNG_FILTER_NONE)
|
|
strategy = Z_DEFAULT_STRATEGY;
|
|
|
|
else
|
|
strategy = Z_FILTERED;
|
|
break;
|
|
|
|
case PNG_COMPRESSION_HIGH_SPEED:
|
|
/* RLE is as fast as HUFFMAN_ONLY and can reduce size a lot in a few
|
|
* cases.
|
|
*/
|
|
strategy = Z_RLE;
|
|
break;
|
|
|
|
default: /* For GCC */
|
|
case PNG_COMPRESSION_LOW:
|
|
case PNG_COMPRESSION_MEDIUM:
|
|
/* Z_FILTERED is almost as good as the default and can be
|
|
* significantly faster. It biases the algorithm towards smaller
|
|
* byte values.
|
|
*
|
|
* Using Z_DEFAULT_STRATEGY here, rather than Z_FILTERED, benefits
|
|
* smaller 8 and 16-bit gray and larger 8 and 16-bit RGB images,
|
|
* however the overall gain is only 0.1% because it is offset by
|
|
* losses in larger 8-bit gray and alpha images. It is extremely
|
|
* difficult to deduce a pattern other than biases in the test set
|
|
* of images.
|
|
*
|
|
* Looking at the pattern of behavior with the 1.6 filter selection
|
|
* algorithm (none of palette or low-bit-depth, else all) produces
|
|
* results as follows:
|
|
*/
|
|
if (owner == png_IDAT)
|
|
{
|
|
if (filters == PNG_FILTER_NONE)
|
|
strategy = Z_DEFAULT_STRATEGY;
|
|
|
|
else
|
|
strategy = Z_FILTERED;
|
|
}
|
|
|
|
else if (owner == png_iCCP)
|
|
strategy = Z_DEFAULT_STRATEGY;
|
|
|
|
/* TODO: investigate this, the observed behavior is suspicious: */
|
|
else /* text chunk */
|
|
strategy = Z_FILTERED; /* Always better for some reason */
|
|
break;
|
|
|
|
case PNG_COMPRESSION_LOW_MEMORY:
|
|
/* Reduce memory at all costs, speed doesn't matter. */
|
|
case PNG_COMPRESSION_HIGH_READ_SPEED:
|
|
case PNG_COMPRESSION_HIGH:
|
|
if (owner == png_IDAT || owner == png_iCCP)
|
|
strategy = Z_DEFAULT_STRATEGY;
|
|
|
|
else
|
|
strategy = Z_FILTERED;
|
|
break;
|
|
}
|
|
|
|
settings |= pz_encode(strategy, strategy);
|
|
}
|
|
|
|
else
|
|
strategy = pz_value(strategy, settings);
|
|
|
|
/* Next the zlib level; this just defaults to the png level, except that for
|
|
* Huffman or RLE encoding the level setting for Zlib doesn't matter.
|
|
*/
|
|
if (!pz_isset(level, settings))
|
|
{
|
|
switch (strategy)
|
|
{
|
|
case Z_HUFFMAN_ONLY:
|
|
case Z_RLE:
|
|
/* The 'level' doesn't make any significant difference to the
|
|
* compression with these strategies; in a test set of about 3GByte
|
|
* of PNG files the total compressed size changed under 20 bytes
|
|
* with libpng 1.6!
|
|
*/
|
|
zlib_level = 1;
|
|
break;
|
|
|
|
default: /* Z_FIXED, Z_FILTERED, Z_DEFAULT_STRATEGY */
|
|
/* Everything that uses the window seems to show rapidly diminishing
|
|
* returns above level 6 (at least with libpng 1.6).
|
|
* Z_DEFAULT_COMPRESSION is, in fact, level 6 so Mark seems to
|
|
* concur. With libpng 1.6 the following results were obtained
|
|
* using the full test set of files (including those with a partial
|
|
* byte at the end of the row) and just varying the zlib level:
|
|
*
|
|
* LEVEL SIZE(bytes) CHANGE TIME(s) CHANGE METRIC
|
|
* 9 2550246600 -1.19% 1972 +227% -77%
|
|
* 8 2556675866 -0.94% 1215 +101% -59%
|
|
* 7 2572685552 -0.32% 679 +12% -15%
|
|
* 6 2581196708 0% 604 0% 0%
|
|
* 5 2602831249 +0.84% 414 -30% +87%
|
|
* 4 2625206800 +1.71% 358 -40% +153%
|
|
* 3 2674752349 +3.62% 298 -50% +303%
|
|
* 2 2716261483 +5.23% 262 -56% +537%
|
|
* 1 2749875805 +6.53% 251 -57% +662%
|
|
* 0 7174488347 202 -66%
|
|
*
|
|
* The CHANGE columns express the change in compressed size
|
|
* (positive is an increase; a decrease in compression) and time
|
|
* (positive is an increase; an increase in time) relative to level
|
|
* 6. The METRIC column is a measure of the compression-per-second
|
|
* relative to level 6; positive is an increase in
|
|
* compression-per-second.
|
|
*
|
|
* The metric is derived by assuming the difference in time between
|
|
* level 0 (which does no compression) and the level being
|
|
* considered is spent doing the compression. (Reasonable, since
|
|
* only the level changed). Just the inverse of the product of the
|
|
* size and the time difference is a measure of compression per
|
|
* second. It can be seen that time dominates the metric;
|
|
* compression only varies slightly (under 8%) across the level
|
|
* range.
|
|
*/
|
|
switch (png_level)
|
|
{
|
|
case PNG_COMPRESSION_COMPAT:
|
|
zlib_level = Z_DEFAULT_COMPRESSION; /* NOTE: -1 */
|
|
break;
|
|
|
|
case PNG_COMPRESSION_HIGH_SPEED:
|
|
zlib_level = 1;
|
|
break;
|
|
|
|
default: /* For GCC */
|
|
case PNG_COMPRESSION_LOW:
|
|
zlib_level = 3;
|
|
break;
|
|
|
|
case PNG_COMPRESSION_MEDIUM:
|
|
zlib_level = 6; /* Old default! */
|
|
break;
|
|
|
|
case PNG_COMPRESSION_LOW_MEMORY:
|
|
case PNG_COMPRESSION_HIGH_READ_SPEED:
|
|
case PNG_COMPRESSION_HIGH:
|
|
zlib_level = 9;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
settings |= pz_encode(level, zlib_level);
|
|
}
|
|
|
|
else
|
|
zlib_level = pz_value(level, settings);
|
|
|
|
/* Now default windowBits. This is probably the most important of the
|
|
* settings because it is pretty much the only one that affects decode
|
|
* performance. The smaller the better:
|
|
*/
|
|
if (!pz_isset(windowBits, settings))
|
|
{
|
|
if (png_level == PNG_COMPRESSION_COMPAT/* Legacy */)
|
|
{
|
|
/* This is the libpng16 calculation (it is wrong; a misunderstanding of
|
|
* what zlib actually requires!)
|
|
*
|
|
* Using the code below with the legacy choice of Z_FILTERED or
|
|
* Z_DEFAULT_STRATEGY increases the size of the test files by only
|
|
* 0.04%, however the settings below considerably reduce the windowBits
|
|
* used potentially benefitting read code a lot.
|
|
*
|
|
* NOTE: the algorithm below was determined by experiment and
|
|
* observation with the same set of test files; there is some
|
|
* considerable possibility that a different set might show different
|
|
* results. Obtaining large, representative, test sets is both a
|
|
* considerable amount of work and very error prone. [JB 20160518]
|
|
*/
|
|
windowBits = 15;
|
|
|
|
if (data_size <= 16384U)
|
|
{
|
|
unsigned int half_window_size = 1U << (windowBits-1);
|
|
|
|
while (data_size + 262U <= half_window_size)
|
|
{
|
|
half_window_size >>= 1;
|
|
--windowBits;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The window size affects the memory used on both read and write but also
|
|
* the time on write (but not normally read). Handle the low memory
|
|
* requirement first:
|
|
*/
|
|
else if (zlib_level == Z_NO_COMPRESSION ||
|
|
png_level == PNG_COMPRESSION_LOW_MEMORY)
|
|
windowBits = 8;
|
|
|
|
/* If the strategy has been set to something that doesn't benefit from
|
|
* higher windowBits values take advantage of this. Note that pz_value
|
|
* returns an invalid value if pz_isset is false.
|
|
*
|
|
* The only png_level that affects this decision is HIGH_SPEED, because
|
|
* a smaller windowBits should speed up the search, however the code above
|
|
* chose zlib_level based on this so ignore that consideration and just
|
|
* use zlib_level below.
|
|
*/
|
|
else switch (strategy)
|
|
{
|
|
png_alloc_size_t test_size;
|
|
|
|
case Z_HUFFMAN_ONLY:
|
|
/* Use the minimum; the window doesn't get used */
|
|
windowBits = 8;
|
|
break;
|
|
|
|
case Z_RLE:
|
|
/* The longest length code is 258 bytes, the shortest string that
|
|
* can achieve this is 259 bytes long; 259 copies of the same byte
|
|
* which can be encoded as a code for the byte value then a string
|
|
* of length 258 starting at the first byte. So if the data is
|
|
* longer than 256 bytes use '9' for the windowBits, otherwise use
|
|
* 8:
|
|
*/
|
|
if (data_size <= 256U)
|
|
windowBits = 8;
|
|
|
|
else
|
|
windowBits = 9;
|
|
break;
|
|
|
|
/* By experiment using about 150,000 files the optimal windowBits
|
|
* value across a range of files is somewhat less than implied by
|
|
* the data size and depends on the zlib level and the strategy
|
|
* used, the following values were determined by experiment using
|
|
* those files:
|
|
*/
|
|
case Z_FILTERED:
|
|
/* The Z_FILTERED case changes suddenly at (zlib) level 4 to
|
|
* benefit from looking at all the data:
|
|
*/
|
|
if (zlib_level < 4 && zlib_level != Z_DEFAULT_COMPRESSION/*-1: 6*/)
|
|
test_size = data_size / 8U;
|
|
|
|
else
|
|
test_size = data_size;
|
|
|
|
goto check_test_size;
|
|
|
|
case Z_FIXED:
|
|
/* With the fixed Huffman tables better compression only ever comes
|
|
* from looking for matches, so, logically:
|
|
*/
|
|
test_size = data_size;
|
|
goto check_test_size;
|
|
|
|
default:
|
|
/* The default algorithm always does better with a window smaller
|
|
* than all the data and shows jumps at level 4 and level 8. The
|
|
* net effect with the test set of images is a very minor overall
|
|
* improvement compared to the pre-1.7 calculation (data size +
|
|
* 262). The benefit is less than 0.01%, however smaller window
|
|
* sizes reduce the memory zlib has to allocate in the decoder.
|
|
*/
|
|
switch (zlib_level)
|
|
{
|
|
case 1: case 2: case 3:
|
|
test_size = data_size / 8U;
|
|
break;
|
|
|
|
default: /* -1(Z_DEFAULT_COMPRESSION) == 6, 4..7 */
|
|
/* This includes, implicitly, ZLIB_NO_COMPRESSION, but that
|
|
* was eliminated in the 'if' above.
|
|
*/
|
|
test_size = data_size / 4U;
|
|
break;
|
|
|
|
case 8: case 9:
|
|
test_size = data_size / 3U;
|
|
break;
|
|
}
|
|
|
|
goto check_test_size;
|
|
|
|
check_test_size:
|
|
/* Find the smallest window that covers 'test_size' bytes, subject
|
|
* to the constraint that if the actual data size is more than 256
|
|
* bytes the minimum windowBits that can be supported is 9:
|
|
*/
|
|
if (data_size <= 256U)
|
|
windowBits = 8;
|
|
|
|
else
|
|
windowBits = 9;
|
|
|
|
while (windowBits < 15 && (1U << windowBits) < test_size)
|
|
++windowBits;
|
|
|
|
break;
|
|
}
|
|
|
|
settings |= pz_encode(windowBits, windowBits);
|
|
}
|
|
|
|
else
|
|
windowBits = pz_value(windowBits, settings);
|
|
|
|
/* zlib has a problem with 256 byte windows; 512 is used instead.
|
|
* We can't work round this if the data size is more than 256 bytes and
|
|
* the strategy actually uses the window (everything except huffman-only)
|
|
* so fix the problem here.
|
|
*/
|
|
if (windowBits == 8 && data_size > 256U && strategy != Z_HUFFMAN_ONLY &&
|
|
zlib_level != Z_NO_COMPRESSION)
|
|
settings = pz_change(windowBits, settings, 9);
|
|
|
|
/* For memLevel this just increases the memory used but can help with the
|
|
* Huffman code generation even to level 9 (the maximum), so just set the
|
|
* max. This affects memory used, not (apparently) compression speed so
|
|
* the only relevant png_level is LOW_MEMORY.
|
|
*
|
|
* The legacy setting is '8'; this is the level that Zlib defaults to because
|
|
* 16-bit iAPX86 systems could not handle '9'. Because MAX_MEM_LEVEL is used
|
|
* below this does not matter; zconf.h selects 8 or 9 as appropriate.
|
|
*
|
|
* In fact using '9' with the legacy settings increases the size of the test
|
|
* set minutely; +0.007%. This is hardly significant; 0.007% of the test
|
|
* images equals 10 images. (Nevertheless it is interesting, just as the
|
|
* observation that decreasing windowBits can result in smaller compressed
|
|
* sizes is interesting.)
|
|
*/
|
|
if (!pz_isset(memLevel, settings))
|
|
{
|
|
int memLevel;
|
|
|
|
switch (png_level)
|
|
{
|
|
case PNG_COMPRESSION_COMPAT:
|
|
memLevel = 8;
|
|
break;
|
|
|
|
case PNG_COMPRESSION_LOW_MEMORY:
|
|
memLevel = 1;
|
|
break;
|
|
|
|
default:
|
|
memLevel = MAX_MEM_LEVEL/*from zconf.h*/;
|
|
break;
|
|
}
|
|
|
|
settings |= pz_encode(memLevel, memLevel);
|
|
}
|
|
|
|
return settings;
|
|
}
|
|
|
|
/* This is used below to find the size of an image to pass to png_deflate_claim.
|
|
* It returns 0 for images whose size would overflow a 32-bit integer or have
|
|
* rows which cannot be allocated.
|
|
*/
|
|
static png_alloc_size_t
|
|
png_image_size(png_const_structrp png_ptr)
|
|
{
|
|
/* The size returned here is limited to PNG_SIZE_MAX, if the size would
|
|
* exceed that (or is close to exceeding that) 0 is returned. See below for
|
|
* a variant that limits the size of 0xFFFFFFFFU.
|
|
*/
|
|
const png_alloc_size_t rowbytes = png_ptr->zlib_state->write_row_size;
|
|
|
|
/* NON-INTERLACED: (1+rowbytes) * h
|
|
* INTERLACED: Each pixel is transmitted exactly once, so the size is
|
|
* (rowbytes * h) + the count of filter bytes. Each complete
|
|
* block of 8 image rows generates at most 15 output rows
|
|
* (less for narrow images), so the filter byte count is
|
|
* at most (15*h/8)+14. Because the original rows are split
|
|
* extra byte passing may be introduced. Account for this by
|
|
* allowing an extra 1 byte per output row; that's two bytes
|
|
* including the filer byte.
|
|
*
|
|
* So:
|
|
* NON-INTERLACED: (rowbytes * h) + h
|
|
* INTERLACED: < (rowbytes * h) + 2*(15 * h/8) + 2*15
|
|
*
|
|
* Hence:
|
|
*/
|
|
if (rowbytes != 0)
|
|
{
|
|
const png_uint_32 h = png_ptr->height;
|
|
|
|
if (png_ptr->interlaced == PNG_INTERLACE_NONE)
|
|
{
|
|
const png_alloc_size_t limit = PNG_SIZE_MAX / h;
|
|
|
|
/* On 16-bit systems the above might be 0, so: */
|
|
if (rowbytes </*allow 1 for filter byte*/ limit)
|
|
return (rowbytes+1U) * h;
|
|
}
|
|
|
|
else /* INTERLACED */
|
|
{
|
|
const png_uint_32 w = png_ptr->width;
|
|
|
|
/* Interlacing makes the image larger because of the replication of
|
|
* both the filter byte and the padding to a byte boundary.
|
|
*/
|
|
png_alloc_size_t cb_base;
|
|
int pass;
|
|
|
|
for (cb_base=0, pass=0; pass<PNG_INTERLACE_ADAM7_PASSES; ++pass)
|
|
{
|
|
const png_uint_32 pass_w = PNG_PASS_COLS(w, pass);
|
|
|
|
if (pass_w > 0)
|
|
{
|
|
const png_uint_32 pass_h = PNG_PASS_ROWS(h, pass);
|
|
|
|
if (pass_h > 0)
|
|
{
|
|
/* This is the number of bytes available for each row of this
|
|
* pass:
|
|
*/
|
|
const png_alloc_size_t limit = (PNG_SIZE_MAX - cb_base)/pass_h;
|
|
/* This cannot overflow because if it did rowbytes would
|
|
* have been 0 above.
|
|
*/
|
|
const png_alloc_size_t pass_bytes =
|
|
PNG_ROWBYTES(png_ptr->row_output_pixel_depth, pass_w);
|
|
|
|
if (pass_bytes </*allow 1 for filter byte*/ limit)
|
|
cb_base += (pass_bytes+1U) * pass_h;
|
|
|
|
else
|
|
return 0U; /* insufficient address space left */
|
|
}
|
|
}
|
|
}
|
|
|
|
return cb_base;
|
|
}
|
|
}
|
|
|
|
/* Failure case: */
|
|
return 0U;
|
|
}
|
|
|
|
/* Initialize the compressor for the appropriate type of compression. */
|
|
static png_zlib_statep
|
|
png_deflate_claim(png_structrp png_ptr, png_uint_32 owner,
|
|
png_alloc_size_t data_size)
|
|
{
|
|
png_zlib_statep ps = get_zlib_state(png_ptr);
|
|
|
|
affirm(png_ptr->zowner == 0);
|
|
|
|
{
|
|
int ret; /* zlib return code */
|
|
unsigned int filters = 0U;
|
|
png_uint_32 settings;
|
|
|
|
switch (owner)
|
|
{
|
|
case png_IDAT:
|
|
debug(data_size == 0U);
|
|
data_size = png_image_size(png_ptr);
|
|
|
|
if (data_size == 0U)
|
|
data_size = PNG_SIZE_MAX;
|
|
|
|
settings = ps->pz_IDAT;
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
filters = ps->filter_mask;
|
|
debug(filters != 0U);
|
|
# else /* !WRITE_FILTER */
|
|
filters = PNG_FILTER_NONE;
|
|
# endif /* !WRITE_FILTER */
|
|
break;
|
|
|
|
case png_iCCP:
|
|
settings = ps->pz_iCCP;
|
|
break;
|
|
|
|
default: /* text chunk */
|
|
settings = ps->pz_text;
|
|
break;
|
|
}
|
|
|
|
settings = pz_default_settings(settings, owner, data_size, filters);
|
|
|
|
/* Check against the previous initialized values, if any. The relevant
|
|
* settings are in the low 16 bits.
|
|
*/
|
|
if (ps->s.zs.state != NULL &&
|
|
((settings ^ ps->pz_current) & pz_zlib_bits) != 0U)
|
|
png_deflateEnd(png_ptr, &ps->s.zs, 0/*check*/);
|
|
|
|
/* For safety clear out the input and output pointers (currently zlib
|
|
* doesn't use them on Init, but it might in the future).
|
|
*/
|
|
ps->s.zs.next_in = NULL;
|
|
ps->s.zs.avail_in = 0;
|
|
ps->s.zs.next_out = NULL;
|
|
ps->s.zs.avail_out = 0;
|
|
|
|
/* The length fields must be cleared too and the lists reset: */
|
|
ps->s.overflow = ps->s.len = ps->s.start = 0U;
|
|
|
|
if (ps->s.list != NULL) /* error in prior chunk writing */
|
|
{
|
|
debug(ps->stash == NULL);
|
|
ps->stash = ps->s.list;
|
|
ps->s.list = NULL;
|
|
}
|
|
|
|
ps->s.end = &ps->s.list;
|
|
|
|
/* Now initialize if required, setting the new parameters, otherwise just
|
|
* do a simple reset to the previous parameters.
|
|
*/
|
|
if (ps->s.zs.state != NULL)
|
|
ret = deflateReset(&ps->s.zs);
|
|
|
|
else
|
|
ret = deflateInit2(&ps->s.zs, pz_value(level, settings), Z_DEFLATED,
|
|
pz_value(windowBits, settings), pz_value(memLevel, settings),
|
|
pz_value(strategy, settings));
|
|
|
|
ps->pz_current = settings;
|
|
|
|
/* The return code is from either deflateReset or deflateInit2; they have
|
|
* pretty much the same set of error codes.
|
|
*/
|
|
if (ret == Z_OK && ps->s.zs.state != NULL)
|
|
png_ptr->zowner = owner;
|
|
|
|
else
|
|
{
|
|
png_zstream_error(&ps->s.zs, ret);
|
|
png_error(png_ptr, ps->s.zs.msg);
|
|
}
|
|
}
|
|
|
|
return ps;
|
|
}
|
|
|
|
#ifdef PNG_WRITE_COMPRESSED_TEXT_SUPPORTED /* includes iCCP */
|
|
/* Compress the block of data at the end of a chunk. This claims and releases
|
|
* png_struct::z_stream. It returns the amount of data in the chunk list or
|
|
* zero on error (a zlib stream always contains some bytes!)
|
|
*
|
|
* prefix_len is the amount of (uncompressed) data before the start of the
|
|
* compressed data. The routine will return 0 if the total of the compressed
|
|
* data and the prefix exceeds PNG_UINT_MAX_31.
|
|
*
|
|
* NOTE: this function may not return; it only returns 0 if
|
|
* png_chunk_report(PNG_CHUNK_WRITE_ERROR) returns (not the default).
|
|
*/
|
|
static int /* success */
|
|
png_compress_chunk_data(png_structrp png_ptr, png_uint_32 chunk_name,
|
|
png_uint_32 prefix_len, png_const_voidp input, png_alloc_size_t input_len)
|
|
{
|
|
/* To find the length of the output it is necessary to first compress the
|
|
* input. The result is buffered rather than using the two-pass algorithm
|
|
* that is used on the inflate side; deflate is assumed to be slower and a
|
|
* PNG writer is assumed to have more memory available than a PNG reader.
|
|
*
|
|
* IMPLEMENTATION NOTE: the zlib API deflateBound() can be used to find an
|
|
* upper limit on the output size, but it is always bigger than the input
|
|
* size so it is likely to be more efficient to use this linked-list
|
|
* approach.
|
|
*/
|
|
png_zlib_statep ps = png_deflate_claim(png_ptr, chunk_name, input_len);
|
|
|
|
affirm(ps != NULL);
|
|
|
|
/* The data compression function always returns so that we can clean up. */
|
|
ps->s.zs.next_in = PNGZ_INPUT_CAST(png_voidcast(const Bytef*, input));
|
|
|
|
/* Use the stash, if available: */
|
|
debug(ps->s.list == NULL);
|
|
ps->s.list = ps->stash;
|
|
ps->stash = NULL;
|
|
|
|
{
|
|
int ret = png_compress(&ps->s, input_len, PNG_UINT_31_MAX-prefix_len,
|
|
Z_FINISH);
|
|
|
|
ps->s.zs.next_out = NULL; /* safety */
|
|
ps->s.zs.avail_out = 0;
|
|
ps->s.zs.next_in = NULL;
|
|
ps->s.zs.avail_in = 0;
|
|
png_ptr->zowner = 0; /* release png_ptr::zstream */
|
|
|
|
/* Since Z_FINISH was passed as the flush parameter any result other than
|
|
* Z_STREAM_END is an error. In any case in the event of an error free
|
|
* the whole compression state; the only expected error is Z_MEM_ERROR.
|
|
*/
|
|
if (ret != Z_STREAM_END)
|
|
{
|
|
png_zlib_compress_destroy(&ps->s, 0/*check*/);
|
|
|
|
/* This is not very likely given the PNG_UINT_31_MAX limit above, but
|
|
* if code is added to limit the size of the chunks produced it can
|
|
* start to happen.
|
|
*/
|
|
if (ret == Z_BUF_ERROR)
|
|
ps->s.zs.msg = PNGZ_MSG_CAST("compressed chunk too long");
|
|
|
|
else
|
|
png_zstream_error(&ps->s.zs, ret);
|
|
|
|
png_chunk_report(png_ptr, ps->s.zs.msg, PNG_CHUNK_WRITE_ERROR);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* png_compress is meant to guarantee this on a successful return: */
|
|
affirm(ps->s.overflow == 0U && ps->s.len <= PNG_UINT_31_MAX - prefix_len);
|
|
|
|
/* Correct the zlib CINFO field: */
|
|
if (ps->s.len >= 2U)
|
|
fix_cinfo(ps, ps->s.list->output, input_len);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Return the length of the compressed data; this is effectively a debug
|
|
* function to catch inconsistencies caused by internal errors. It will
|
|
* disappear in a release build.
|
|
*/
|
|
#if PNG_RELEASE_BUILD
|
|
# define png_length_compressed_chunk_data(pp, p) ((pp)->zlib_state->s.len)
|
|
#else /* !RELEASE_BUILD */
|
|
static png_uint_32
|
|
png_length_compressed_chunk_data(png_structrp png_ptr, png_uint_32 p)
|
|
{
|
|
png_zlib_statep ps = png_ptr->zlib_state;
|
|
|
|
debug(ps != NULL && ps->s.overflow == 0U && ps->s.len <= PNG_UINT_31_MAX-p);
|
|
return ps->s.len;
|
|
}
|
|
#endif /* !RELEASE_BUILD */
|
|
|
|
/* Write all the data produced by the above function; the caller must write the
|
|
* prefix and chunk header.
|
|
*/
|
|
static void
|
|
png_write_compressed_chunk_data(png_structrp png_ptr)
|
|
{
|
|
png_zlib_statep ps = png_ptr->zlib_state;
|
|
png_compression_bufferp next;
|
|
png_uint_32 output_len;
|
|
|
|
affirm(ps != NULL && ps->s.overflow == 0U);
|
|
next = ps->s.list;
|
|
|
|
for (output_len = ps->s.len; output_len > 0U; next = next->next)
|
|
{
|
|
png_uint_32 size = PNG_ROW_BUFFER_SIZE;
|
|
|
|
/* If this affirm fails there is a bug in the calculation of
|
|
* output_length above, or in the buffer_limit code in png_compress.
|
|
*/
|
|
affirm(next != NULL && output_len > 0U);
|
|
|
|
if (size > output_len)
|
|
size = output_len;
|
|
|
|
png_write_chunk_data(png_ptr, next->output, size);
|
|
|
|
output_len -= size;
|
|
}
|
|
|
|
/* Release the list back to the stash. */
|
|
debug(ps->stash == NULL);
|
|
ps->stash = ps->s.list;
|
|
ps->s.list = NULL;
|
|
ps->s.end = &ps->s.list;
|
|
}
|
|
#endif /* WRITE_COMPRESSED_TEXT */
|
|
|
|
#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_pCAL_SUPPORTED) || \
|
|
defined(PNG_WRITE_iCCP_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED)
|
|
/* Check that the tEXt or zTXt keyword is valid per PNG 1.0 specification,
|
|
* and if invalid, correct the keyword rather than discarding the entire
|
|
* chunk. The PNG 1.0 specification requires keywords 1-79 characters in
|
|
* length, forbids leading or trailing whitespace, multiple internal spaces,
|
|
* and the non-break space (0x80) from ISO 8859-1. Returns keyword length.
|
|
*
|
|
* The 'new_key' buffer must be at least 80 characters in size (for the keyword
|
|
* plus a trailing '\0'). If this routine returns 0 then there was no keyword,
|
|
* or a valid one could not be generated, and the caller must CHUNK_WRITE_ERROR.
|
|
*/
|
|
static unsigned int
|
|
png_check_keyword(png_structrp png_ptr, png_const_charp key, png_bytep new_key)
|
|
{
|
|
png_const_charp orig_key = key;
|
|
unsigned int key_len = 0;
|
|
int bad_character = 0;
|
|
int space = 1;
|
|
|
|
png_debug(1, "in png_check_keyword");
|
|
|
|
if (key == NULL)
|
|
{
|
|
*new_key = 0;
|
|
return 0;
|
|
}
|
|
|
|
while (*key && key_len < 79)
|
|
{
|
|
png_byte ch = (png_byte)(0xff & *key++);
|
|
|
|
if ((ch > 32 && ch <= 126) || (ch >= 161 /*&& ch <= 255*/))
|
|
*new_key++ = ch, ++key_len, space = 0;
|
|
|
|
else if (space == 0)
|
|
{
|
|
/* A space or an invalid character when one wasn't seen immediately
|
|
* before; output just a space.
|
|
*/
|
|
*new_key++ = 32, ++key_len, space = 1;
|
|
|
|
/* If the character was not a space then it is invalid. */
|
|
if (ch != 32)
|
|
bad_character = ch;
|
|
}
|
|
|
|
else if (bad_character == 0)
|
|
bad_character = ch; /* just skip it, record the first error */
|
|
}
|
|
|
|
if (key_len > 0 && space != 0) /* trailing space */
|
|
{
|
|
--key_len, --new_key;
|
|
if (bad_character == 0)
|
|
bad_character = 32;
|
|
}
|
|
|
|
/* Terminate the keyword */
|
|
*new_key = 0;
|
|
|
|
if (key_len == 0)
|
|
return 0;
|
|
|
|
#ifdef PNG_WARNINGS_SUPPORTED
|
|
/* Try to only output one warning per keyword: */
|
|
if (*key != 0) /* keyword too long */
|
|
png_app_warning(png_ptr, "keyword truncated");
|
|
|
|
else if (bad_character != 0)
|
|
{
|
|
PNG_WARNING_PARAMETERS(p)
|
|
|
|
png_warning_parameter(p, 1, orig_key);
|
|
png_warning_parameter_signed(p, 2, PNG_NUMBER_FORMAT_02x, bad_character);
|
|
|
|
png_formatted_warning(png_ptr, p, "keyword \"@1\": bad character '0x@2'");
|
|
}
|
|
#endif /* WARNINGS */
|
|
|
|
return key_len;
|
|
}
|
|
#endif /* WRITE_TEXT || WRITE_pCAL || WRITE_iCCP || WRITE_sPLT */
|
|
|
|
/* Write the IHDR chunk, and update the png_struct with the necessary
|
|
* information. Note that the rest of this code depends upon this
|
|
* information being correct.
|
|
*/
|
|
void /* PRIVATE */
|
|
png_write_IHDR(png_structrp png_ptr, png_uint_32 width, png_uint_32 height,
|
|
int bit_depth, int color_type, int compression_type, int filter_method,
|
|
int interlace_type)
|
|
{
|
|
png_byte buf[13]; /* Buffer to store the IHDR info */
|
|
|
|
png_debug(1, "in png_write_IHDR");
|
|
|
|
/* Check that we have valid input data from the application info */
|
|
switch (color_type)
|
|
{
|
|
case PNG_COLOR_TYPE_GRAY:
|
|
switch (bit_depth)
|
|
{
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
#ifdef PNG_WRITE_16BIT_SUPPORTED
|
|
case 16:
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
png_error(png_ptr, "Invalid bit depth for grayscale image");
|
|
}
|
|
break;
|
|
|
|
case PNG_COLOR_TYPE_RGB:
|
|
#ifdef PNG_WRITE_16BIT_SUPPORTED
|
|
if (bit_depth != 8 && bit_depth != 16)
|
|
#else
|
|
if (bit_depth != 8)
|
|
#endif
|
|
png_error(png_ptr, "Invalid bit depth for RGB image");
|
|
|
|
break;
|
|
|
|
case PNG_COLOR_TYPE_PALETTE:
|
|
switch (bit_depth)
|
|
{
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
break;
|
|
|
|
default:
|
|
png_error(png_ptr, "Invalid bit depth for paletted image");
|
|
}
|
|
break;
|
|
|
|
case PNG_COLOR_TYPE_GRAY_ALPHA:
|
|
if (bit_depth != 8 && bit_depth != 16)
|
|
png_error(png_ptr, "Invalid bit depth for grayscale+alpha image");
|
|
|
|
break;
|
|
|
|
case PNG_COLOR_TYPE_RGB_ALPHA:
|
|
#ifdef PNG_WRITE_16BIT_SUPPORTED
|
|
if (bit_depth != 8 && bit_depth != 16)
|
|
#else
|
|
if (bit_depth != 8)
|
|
#endif
|
|
png_error(png_ptr, "Invalid bit depth for RGBA image");
|
|
|
|
break;
|
|
|
|
default:
|
|
png_error(png_ptr, "Invalid image color type specified");
|
|
}
|
|
|
|
if (compression_type != PNG_COMPRESSION_TYPE_BASE)
|
|
{
|
|
png_app_error(png_ptr, "Invalid compression type specified");
|
|
compression_type = PNG_COMPRESSION_TYPE_BASE;
|
|
}
|
|
|
|
/* Write filter_method 64 (intrapixel differencing) only if
|
|
* 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
|
|
* 2. Libpng did not write a PNG signature (this filter_method is only
|
|
* used in PNG datastreams that are embedded in MNG datastreams) and
|
|
* 3. The application called png_permit_mng_features with a mask that
|
|
* included PNG_FLAG_MNG_FILTER_64 and
|
|
* 4. The filter_method is 64 and
|
|
* 5. The color_type is RGB or RGBA
|
|
*/
|
|
if (
|
|
# ifdef PNG_MNG_FEATURES_SUPPORTED
|
|
!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 &&
|
|
((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
|
|
(color_type == PNG_COLOR_TYPE_RGB ||
|
|
color_type == PNG_COLOR_TYPE_RGB_ALPHA) &&
|
|
(filter_method == PNG_INTRAPIXEL_DIFFERENCING)) &&
|
|
# endif /* MNG_FEATURES */
|
|
filter_method != PNG_FILTER_TYPE_BASE)
|
|
{
|
|
png_app_error(png_ptr, "Invalid filter type specified");
|
|
filter_method = PNG_FILTER_TYPE_BASE;
|
|
}
|
|
|
|
if (interlace_type != PNG_INTERLACE_NONE &&
|
|
interlace_type != PNG_INTERLACE_ADAM7)
|
|
{
|
|
png_app_error(png_ptr, "Invalid interlace type specified");
|
|
interlace_type = PNG_INTERLACE_ADAM7;
|
|
}
|
|
|
|
/* Save the relevant information */
|
|
png_ptr->bit_depth = png_check_byte(png_ptr, bit_depth);
|
|
png_ptr->color_type = png_check_byte(png_ptr, color_type);
|
|
png_ptr->interlaced = png_check_byte(png_ptr, interlace_type);
|
|
png_ptr->filter_method = png_check_byte(png_ptr, filter_method);
|
|
png_ptr->compression_type = png_check_byte(png_ptr, compression_type);
|
|
png_ptr->width = width;
|
|
png_ptr->height = height;
|
|
|
|
/* Pack the header information into the buffer */
|
|
png_save_uint_32(buf, width);
|
|
png_save_uint_32(buf + 4, height);
|
|
buf[8] = png_check_byte(png_ptr, bit_depth);
|
|
buf[9] = png_check_byte(png_ptr, color_type);
|
|
buf[10] = png_check_byte(png_ptr, compression_type);
|
|
buf[11] = png_check_byte(png_ptr, filter_method);
|
|
buf[12] = png_check_byte(png_ptr, interlace_type);
|
|
|
|
/* Write the chunk */
|
|
png_write_complete_chunk(png_ptr, png_IHDR, buf, (png_size_t)13);
|
|
png_ptr->mode |= PNG_HAVE_IHDR;
|
|
}
|
|
|
|
/* Write the palette. We are careful not to trust png_color to be in the
|
|
* correct order for PNG, so people can redefine it to any convenient
|
|
* structure.
|
|
*/
|
|
void /* PRIVATE */
|
|
png_write_PLTE(png_structrp png_ptr, png_const_colorp palette,
|
|
unsigned int num_pal)
|
|
{
|
|
png_uint_32 max_palette_length, i;
|
|
png_const_colorp pal_ptr;
|
|
png_byte buf[3];
|
|
|
|
png_debug(1, "in png_write_PLTE");
|
|
|
|
max_palette_length = (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) ?
|
|
(1 << png_ptr->bit_depth) : PNG_MAX_PALETTE_LENGTH;
|
|
|
|
if ((
|
|
# ifdef PNG_MNG_FEATURES_SUPPORTED
|
|
(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE) == 0 &&
|
|
# endif /* MNG_FEATURES */
|
|
num_pal == 0) || num_pal > max_palette_length)
|
|
{
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
|
|
{
|
|
png_error(png_ptr, "Invalid number of colors in palette");
|
|
}
|
|
|
|
else
|
|
{
|
|
png_warning(png_ptr, "Invalid number of colors in palette");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) == 0)
|
|
{
|
|
png_warning(png_ptr,
|
|
"Ignoring request to write a PLTE chunk in grayscale PNG");
|
|
|
|
return;
|
|
}
|
|
|
|
png_ptr->num_palette = png_check_bits(png_ptr, num_pal, 9);
|
|
png_debug1(3, "num_palette = %d", png_ptr->num_palette);
|
|
|
|
png_write_chunk_header(png_ptr, png_PLTE, num_pal * 3U);
|
|
|
|
for (i = 0, pal_ptr = palette; i < num_pal; i++, pal_ptr++)
|
|
{
|
|
buf[0] = pal_ptr->red;
|
|
buf[1] = pal_ptr->green;
|
|
buf[2] = pal_ptr->blue;
|
|
png_write_chunk_data(png_ptr, buf, 3U);
|
|
}
|
|
|
|
png_write_chunk_end(png_ptr);
|
|
png_ptr->mode |= PNG_HAVE_PLTE;
|
|
}
|
|
|
|
/* Write an IEND chunk */
|
|
void /* PRIVATE */
|
|
png_write_IEND(png_structrp png_ptr)
|
|
{
|
|
png_debug(1, "in png_write_IEND");
|
|
|
|
png_write_complete_chunk(png_ptr, png_IEND, NULL, (png_size_t)0);
|
|
png_ptr->mode |= PNG_HAVE_IEND;
|
|
}
|
|
|
|
#if defined(PNG_WRITE_gAMA_SUPPORTED) || defined(PNG_WRITE_cHRM_SUPPORTED)
|
|
static int
|
|
png_save_int_31(png_structrp png_ptr, png_bytep buf, png_int_32 i)
|
|
/* Save a signed value as a PNG unsigned value; the argument is required to
|
|
* be in the range 0..0x7FFFFFFFU. If not a *warning* is produced and false
|
|
* is returned. Because this is only called from png_write_cHRM_fixed and
|
|
* png_write_gAMA_fixed below this is safe (we don't need either chunk,
|
|
* particularly if the value is bogus.)
|
|
*
|
|
* The warning is png_app_error; it may return if the app tells it to but the
|
|
* app can have it error out. JB 20150821: I believe the checking in png.c
|
|
* actually makes this error impossible, but this is safe.
|
|
*/
|
|
{
|
|
#ifndef __COVERITY__
|
|
if (i >= 0 && i <= 0x7FFFFFFF)
|
|
#else
|
|
/* Supress bogus Coverity complaint */
|
|
if (i >= 0)
|
|
#endif
|
|
{
|
|
png_save_uint_32(buf, (png_uint_32)/*SAFE*/i);
|
|
return 1;
|
|
}
|
|
|
|
else
|
|
{
|
|
png_chunk_report(png_ptr, "negative value in cHRM or gAMA",
|
|
PNG_CHUNK_WRITE_ERROR);
|
|
return 0;
|
|
}
|
|
}
|
|
#endif /* WRITE_gAMA || WRITE_cHRM */
|
|
|
|
#ifdef PNG_WRITE_gAMA_SUPPORTED
|
|
/* Write a gAMA chunk */
|
|
void /* PRIVATE */
|
|
png_write_gAMA_fixed(png_structrp png_ptr, png_fixed_point file_gamma)
|
|
{
|
|
png_byte buf[4];
|
|
|
|
png_debug(1, "in png_write_gAMA");
|
|
|
|
/* file_gamma is saved in 1/100,000ths */
|
|
if (png_save_int_31(png_ptr, buf, file_gamma))
|
|
png_write_complete_chunk(png_ptr, png_gAMA, buf, (png_size_t)4);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_sRGB_SUPPORTED
|
|
/* Write a sRGB chunk */
|
|
void /* PRIVATE */
|
|
png_write_sRGB(png_structrp png_ptr, int srgb_intent)
|
|
{
|
|
png_byte buf[1];
|
|
|
|
png_debug(1, "in png_write_sRGB");
|
|
|
|
if (srgb_intent >= PNG_sRGB_INTENT_LAST)
|
|
png_chunk_report(png_ptr, "Invalid sRGB rendering intent specified",
|
|
PNG_CHUNK_WRITE_ERROR);
|
|
|
|
buf[0] = png_check_byte(png_ptr, srgb_intent);
|
|
png_write_complete_chunk(png_ptr, png_sRGB, buf, (png_size_t)1);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_iCCP_SUPPORTED
|
|
/* Write an iCCP chunk */
|
|
void /* PRIVATE */
|
|
png_write_iCCP(png_structrp png_ptr, png_const_charp name,
|
|
png_const_voidp profile)
|
|
{
|
|
png_uint_32 name_len;
|
|
png_uint_32 profile_len;
|
|
png_byte new_name[81]; /* 1 byte for the compression byte */
|
|
|
|
png_debug(1, "in png_write_iCCP");
|
|
|
|
affirm(profile != NULL);
|
|
|
|
profile_len = png_get_uint_32(profile);
|
|
name_len = png_check_keyword(png_ptr, name, new_name);
|
|
|
|
if (name_len == 0)
|
|
{
|
|
png_chunk_report(png_ptr, "iCCP: invalid keyword", PNG_CHUNK_WRITE_ERROR);
|
|
return;
|
|
}
|
|
|
|
++name_len; /* trailing '\0' */
|
|
new_name[name_len++] = PNG_COMPRESSION_TYPE_BASE;
|
|
|
|
if (png_compress_chunk_data(png_ptr, png_iCCP, name_len, profile,
|
|
profile_len))
|
|
{
|
|
png_write_chunk_header(png_ptr, png_iCCP,
|
|
name_len+png_length_compressed_chunk_data(png_ptr, name_len));
|
|
png_write_chunk_data(png_ptr, new_name, name_len);
|
|
png_write_compressed_chunk_data(png_ptr);
|
|
png_write_chunk_end(png_ptr);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_sPLT_SUPPORTED
|
|
/* Write a sPLT chunk */
|
|
void /* PRIVATE */
|
|
png_write_sPLT(png_structrp png_ptr, png_const_sPLT_tp spalette)
|
|
{
|
|
png_uint_32 name_len;
|
|
png_byte new_name[80];
|
|
png_byte entrybuf[10];
|
|
png_size_t entry_size = (spalette->depth == 8 ? 6 : 10);
|
|
png_size_t palette_size = entry_size * spalette->nentries;
|
|
png_sPLT_entryp ep;
|
|
|
|
png_debug(1, "in png_write_sPLT");
|
|
|
|
name_len = png_check_keyword(png_ptr, spalette->name, new_name);
|
|
|
|
if (name_len == 0)
|
|
png_error(png_ptr, "sPLT: invalid keyword");
|
|
|
|
/* Make sure we include the NULL after the name */
|
|
png_write_chunk_header(png_ptr, png_sPLT,
|
|
(png_uint_32)(name_len + 2 + palette_size));
|
|
|
|
png_write_chunk_data(png_ptr, new_name, name_len + 1);
|
|
|
|
png_write_chunk_data(png_ptr, &spalette->depth, 1);
|
|
|
|
/* Loop through each palette entry, writing appropriately */
|
|
for (ep = spalette->entries; ep<spalette->entries + spalette->nentries; ep++)
|
|
{
|
|
if (spalette->depth == 8)
|
|
{
|
|
entrybuf[0] = png_check_byte(png_ptr, ep->red);
|
|
entrybuf[1] = png_check_byte(png_ptr, ep->green);
|
|
entrybuf[2] = png_check_byte(png_ptr, ep->blue);
|
|
entrybuf[3] = png_check_byte(png_ptr, ep->alpha);
|
|
png_save_uint_16(entrybuf + 4, ep->frequency);
|
|
}
|
|
|
|
else
|
|
{
|
|
png_save_uint_16(entrybuf + 0, ep->red);
|
|
png_save_uint_16(entrybuf + 2, ep->green);
|
|
png_save_uint_16(entrybuf + 4, ep->blue);
|
|
png_save_uint_16(entrybuf + 6, ep->alpha);
|
|
png_save_uint_16(entrybuf + 8, ep->frequency);
|
|
}
|
|
|
|
png_write_chunk_data(png_ptr, entrybuf, entry_size);
|
|
}
|
|
|
|
png_write_chunk_end(png_ptr);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_sBIT_SUPPORTED
|
|
/* Write the sBIT chunk */
|
|
void /* PRIVATE */
|
|
png_write_sBIT(png_structrp png_ptr, png_const_color_8p sbit, int color_type)
|
|
{
|
|
png_byte buf[4];
|
|
png_size_t size;
|
|
|
|
png_debug(1, "in png_write_sBIT");
|
|
|
|
/* Make sure we don't depend upon the order of PNG_COLOR_8 */
|
|
if ((color_type & PNG_COLOR_MASK_COLOR) != 0)
|
|
{
|
|
unsigned int maxbits;
|
|
|
|
maxbits = color_type==PNG_COLOR_TYPE_PALETTE ? 8 : png_ptr->bit_depth;
|
|
|
|
if (sbit->red == 0 || sbit->red > maxbits ||
|
|
sbit->green == 0 || sbit->green > maxbits ||
|
|
sbit->blue == 0 || sbit->blue > maxbits)
|
|
{
|
|
png_app_error(png_ptr, "Invalid sBIT depth specified");
|
|
return;
|
|
}
|
|
|
|
buf[0] = sbit->red;
|
|
buf[1] = sbit->green;
|
|
buf[2] = sbit->blue;
|
|
size = 3;
|
|
}
|
|
|
|
else
|
|
{
|
|
if (sbit->gray == 0 || sbit->gray > png_ptr->bit_depth)
|
|
{
|
|
png_app_error(png_ptr, "Invalid sBIT depth specified");
|
|
return;
|
|
}
|
|
|
|
buf[0] = sbit->gray;
|
|
size = 1;
|
|
}
|
|
|
|
if ((color_type & PNG_COLOR_MASK_ALPHA) != 0)
|
|
{
|
|
if (sbit->alpha == 0 || sbit->alpha > png_ptr->bit_depth)
|
|
{
|
|
png_app_error(png_ptr, "Invalid sBIT depth specified");
|
|
return;
|
|
}
|
|
|
|
buf[size++] = sbit->alpha;
|
|
}
|
|
|
|
png_write_complete_chunk(png_ptr, png_sBIT, buf, size);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_cHRM_SUPPORTED
|
|
/* Write the cHRM chunk */
|
|
void /* PRIVATE */
|
|
png_write_cHRM_fixed(png_structrp png_ptr, const png_xy *xy)
|
|
{
|
|
png_byte buf[32];
|
|
|
|
png_debug(1, "in png_write_cHRM");
|
|
|
|
/* Each value is saved in 1/100,000ths */
|
|
if (png_save_int_31(png_ptr, buf, xy->whitex) &&
|
|
png_save_int_31(png_ptr, buf + 4, xy->whitey) &&
|
|
png_save_int_31(png_ptr, buf + 8, xy->redx) &&
|
|
png_save_int_31(png_ptr, buf + 12, xy->redy) &&
|
|
png_save_int_31(png_ptr, buf + 16, xy->greenx) &&
|
|
png_save_int_31(png_ptr, buf + 20, xy->greeny) &&
|
|
png_save_int_31(png_ptr, buf + 24, xy->bluex) &&
|
|
png_save_int_31(png_ptr, buf + 28, xy->bluey))
|
|
png_write_complete_chunk(png_ptr, png_cHRM, buf, 32);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_tRNS_SUPPORTED
|
|
/* Write the tRNS chunk */
|
|
void /* PRIVATE */
|
|
png_write_tRNS(png_structrp png_ptr, png_const_bytep trans_alpha,
|
|
png_const_color_16p tran, int num_trans, int color_type)
|
|
{
|
|
png_byte buf[6];
|
|
|
|
png_debug(1, "in png_write_tRNS");
|
|
|
|
if (color_type == PNG_COLOR_TYPE_PALETTE)
|
|
{
|
|
affirm(num_trans > 0 && num_trans <= PNG_MAX_PALETTE_LENGTH);
|
|
{
|
|
# ifdef PNG_WRITE_INVERT_ALPHA_SUPPORTED
|
|
union
|
|
{
|
|
png_uint_32 u32[1];
|
|
png_byte b8[PNG_MAX_PALETTE_LENGTH];
|
|
} inverted_alpha;
|
|
|
|
/* Invert the alpha channel (in tRNS) if required */
|
|
if (png_ptr->write_invert_alpha)
|
|
{
|
|
int i;
|
|
|
|
memcpy(inverted_alpha.b8, trans_alpha, num_trans);
|
|
|
|
for (i=0; 4*i<num_trans; ++i)
|
|
inverted_alpha.u32[i] = ~inverted_alpha.u32[i];
|
|
|
|
trans_alpha = inverted_alpha.b8;
|
|
}
|
|
# endif /* WRITE_INVERT_ALPHA */
|
|
|
|
png_write_complete_chunk(png_ptr, png_tRNS, trans_alpha, num_trans);
|
|
}
|
|
}
|
|
|
|
else if (color_type == PNG_COLOR_TYPE_GRAY)
|
|
{
|
|
/* One 16 bit value */
|
|
affirm(tran->gray < (1 << png_ptr->bit_depth));
|
|
png_save_uint_16(buf, tran->gray);
|
|
png_write_complete_chunk(png_ptr, png_tRNS, buf, (png_size_t)2);
|
|
}
|
|
|
|
else if (color_type == PNG_COLOR_TYPE_RGB)
|
|
{
|
|
/* Three 16 bit values */
|
|
png_save_uint_16(buf, tran->red);
|
|
png_save_uint_16(buf + 2, tran->green);
|
|
png_save_uint_16(buf + 4, tran->blue);
|
|
affirm(png_ptr->bit_depth == 8 || (buf[0] | buf[2] | buf[4]) == 0);
|
|
png_write_complete_chunk(png_ptr, png_tRNS, buf, (png_size_t)6);
|
|
}
|
|
|
|
else /* Already checked in png_set_tRNS */
|
|
impossible("invalid tRNS");
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_bKGD_SUPPORTED
|
|
/* Write the background chunk */
|
|
void /* PRIVATE */
|
|
png_write_bKGD(png_structrp png_ptr, png_const_color_16p back, int color_type)
|
|
{
|
|
png_byte buf[6];
|
|
|
|
png_debug(1, "in png_write_bKGD");
|
|
|
|
if (color_type == PNG_COLOR_TYPE_PALETTE)
|
|
{
|
|
if (
|
|
# ifdef PNG_MNG_FEATURES_SUPPORTED
|
|
(png_ptr->num_palette != 0 ||
|
|
(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE) == 0) &&
|
|
# endif /* MNG_FEATURES */
|
|
back->index >= png_ptr->num_palette)
|
|
{
|
|
png_app_error(png_ptr, "Invalid background palette index");
|
|
return;
|
|
}
|
|
|
|
buf[0] = back->index;
|
|
png_write_complete_chunk(png_ptr, png_bKGD, buf, (png_size_t)1);
|
|
}
|
|
|
|
else if ((color_type & PNG_COLOR_MASK_COLOR) != 0)
|
|
{
|
|
png_save_uint_16(buf, back->red);
|
|
png_save_uint_16(buf + 2, back->green);
|
|
png_save_uint_16(buf + 4, back->blue);
|
|
#ifdef PNG_WRITE_16BIT_SUPPORTED
|
|
if (png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4]) != 0)
|
|
#else
|
|
if ((buf[0] | buf[2] | buf[4]) != 0)
|
|
#endif
|
|
{
|
|
png_app_error(png_ptr,
|
|
"Ignoring attempt to write 16-bit bKGD chunk when bit_depth is 8");
|
|
|
|
return;
|
|
}
|
|
|
|
png_write_complete_chunk(png_ptr, png_bKGD, buf, (png_size_t)6);
|
|
}
|
|
|
|
else
|
|
{
|
|
if (back->gray >= (1 << png_ptr->bit_depth))
|
|
{
|
|
png_app_error(png_ptr,
|
|
"Ignoring attempt to write bKGD chunk out-of-range for bit_depth");
|
|
|
|
return;
|
|
}
|
|
|
|
png_save_uint_16(buf, back->gray);
|
|
png_write_complete_chunk(png_ptr, png_bKGD, buf, (png_size_t)2);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_hIST_SUPPORTED
|
|
/* Write the histogram */
|
|
void /* PRIVATE */
|
|
png_write_hIST(png_structrp png_ptr, png_const_uint_16p hist, int num_hist)
|
|
{
|
|
int i;
|
|
png_byte buf[3];
|
|
|
|
png_debug(1, "in png_write_hIST");
|
|
|
|
if (num_hist > (int)png_ptr->num_palette)
|
|
{
|
|
png_debug2(3, "num_hist = %d, num_palette = %d", num_hist,
|
|
png_ptr->num_palette);
|
|
|
|
png_warning(png_ptr, "Invalid number of histogram entries specified");
|
|
return;
|
|
}
|
|
|
|
png_write_chunk_header(png_ptr, png_hIST, (png_uint_32)(num_hist * 2));
|
|
|
|
for (i = 0; i < num_hist; i++)
|
|
{
|
|
png_save_uint_16(buf, hist[i]);
|
|
png_write_chunk_data(png_ptr, buf, (png_size_t)2);
|
|
}
|
|
|
|
png_write_chunk_end(png_ptr);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_tEXt_SUPPORTED
|
|
/* Write a tEXt chunk */
|
|
void /* PRIVATE */
|
|
png_write_tEXt(png_structrp png_ptr, png_const_charp key, png_const_charp text,
|
|
png_size_t text_len)
|
|
{
|
|
unsigned int key_len;
|
|
png_byte new_key[80];
|
|
|
|
png_debug(1, "in png_write_tEXt");
|
|
|
|
key_len = png_check_keyword(png_ptr, key, new_key);
|
|
|
|
if (key_len == 0)
|
|
{
|
|
png_chunk_report(png_ptr, "tEXt: invalid keyword", PNG_CHUNK_WRITE_ERROR);
|
|
return;
|
|
}
|
|
|
|
if (text == NULL || *text == '\0')
|
|
text_len = 0;
|
|
|
|
else
|
|
text_len = strlen(text);
|
|
|
|
if (text_len > PNG_UINT_31_MAX - (key_len+1))
|
|
{
|
|
png_chunk_report(png_ptr, "tEXt: text too long", PNG_CHUNK_WRITE_ERROR);
|
|
return;
|
|
}
|
|
|
|
/* Make sure we include the 0 after the key */
|
|
png_write_chunk_header(png_ptr, png_tEXt,
|
|
(png_uint_32)/*checked above*/(key_len + text_len + 1));
|
|
/*
|
|
* We leave it to the application to meet PNG-1.0 requirements on the
|
|
* contents of the text. PNG-1.0 through PNG-1.2 discourage the use of
|
|
* any non-Latin-1 characters except for NEWLINE. ISO PNG will forbid them.
|
|
* The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG.
|
|
*/
|
|
png_write_chunk_data(png_ptr, new_key, key_len + 1);
|
|
|
|
if (text_len != 0)
|
|
png_write_chunk_data(png_ptr, (png_const_bytep)text, text_len);
|
|
|
|
png_write_chunk_end(png_ptr);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_zTXt_SUPPORTED
|
|
/* Write a compressed text chunk */
|
|
void /* PRIVATE */
|
|
png_write_zTXt(png_structrp png_ptr, png_const_charp key, png_const_charp text,
|
|
int compression)
|
|
{
|
|
unsigned int key_len;
|
|
png_byte new_key[81];
|
|
|
|
png_debug(1, "in png_write_zTXt");
|
|
|
|
if (compression != PNG_TEXT_COMPRESSION_zTXt)
|
|
png_app_warning(png_ptr, "zTXt: invalid compression type ignored");
|
|
|
|
key_len = png_check_keyword(png_ptr, key, new_key);
|
|
|
|
if (key_len == 0)
|
|
{
|
|
png_chunk_report(png_ptr, "zTXt: invalid keyword", PNG_CHUNK_WRITE_ERROR);
|
|
return;
|
|
}
|
|
|
|
/* Add the compression method and 1 for the keyword separator. */
|
|
++key_len;
|
|
new_key[key_len++] = PNG_COMPRESSION_TYPE_BASE;
|
|
|
|
if (png_compress_chunk_data(png_ptr, png_zTXt, key_len, text, strlen(text)))
|
|
{
|
|
png_write_chunk_header(png_ptr, png_zTXt,
|
|
key_len+png_length_compressed_chunk_data(png_ptr, key_len));
|
|
png_write_chunk_data(png_ptr, new_key, key_len);
|
|
png_write_compressed_chunk_data(png_ptr);
|
|
png_write_chunk_end(png_ptr);
|
|
}
|
|
|
|
/* else chunk report already issued and ignored */
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_iTXt_SUPPORTED
|
|
/* Write an iTXt chunk */
|
|
void /* PRIVATE */
|
|
png_write_iTXt(png_structrp png_ptr, int compression, png_const_charp key,
|
|
png_const_charp lang, png_const_charp lang_key, png_const_charp text)
|
|
{
|
|
png_uint_32 key_len, prefix_len, data_len;
|
|
png_size_t lang_len, lang_key_len, text_len;
|
|
png_byte new_key[82]; /* 80 bytes for the key, 2 byte compression info */
|
|
|
|
png_debug(1, "in png_write_iTXt");
|
|
|
|
key_len = png_check_keyword(png_ptr, key, new_key);
|
|
|
|
if (key_len == 0)
|
|
{
|
|
png_chunk_report(png_ptr, "iTXt: invalid keyword", PNG_CHUNK_WRITE_ERROR);
|
|
return;
|
|
}
|
|
|
|
debug(new_key[key_len] == 0);
|
|
++key_len; /* terminating 0 added by png_check_keyword */
|
|
|
|
/* Set the compression flag */
|
|
switch (compression)
|
|
{
|
|
case PNG_ITXT_COMPRESSION_NONE:
|
|
case PNG_TEXT_COMPRESSION_NONE:
|
|
compression = new_key[key_len++] = 0; /* no compression */
|
|
break;
|
|
|
|
case PNG_TEXT_COMPRESSION_zTXt:
|
|
case PNG_ITXT_COMPRESSION_zTXt:
|
|
compression = new_key[key_len++] = 1; /* compressed */
|
|
break;
|
|
|
|
default:
|
|
png_chunk_report(png_ptr, "iTXt: invalid compression",
|
|
PNG_CHUNK_WRITE_ERROR);
|
|
return;
|
|
}
|
|
|
|
new_key[key_len++] = PNG_COMPRESSION_TYPE_BASE;
|
|
|
|
/* We leave it to the application to meet PNG-1.0 requirements on the
|
|
* contents of the text. PNG-1.0 through PNG-1.2 discourage the use of
|
|
* any non-Latin-1 characters except for NEWLINE (yes, this is really weird
|
|
* in an 'international' text string. ISO PNG, however, specifies that the
|
|
* text is UTF-8 and this *IS NOT YET CHECKED*, so invalid sequences may be
|
|
* present.
|
|
*
|
|
* The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG.
|
|
*
|
|
* TODO: validate the language tag correctly (see the spec.)
|
|
*/
|
|
if (lang == NULL) lang = ""; /* empty language is valid */
|
|
lang_len = strlen(lang)+1U;
|
|
if (lang_key == NULL) lang_key = ""; /* may be empty */
|
|
lang_key_len = strlen(lang_key)+1U;
|
|
if (text == NULL) text = ""; /* may be empty */
|
|
|
|
if (lang_len > PNG_UINT_31_MAX-key_len ||
|
|
lang_key_len > PNG_UINT_31_MAX-key_len-lang_len)
|
|
{
|
|
png_chunk_report(png_ptr, "iTXt: prefix too long", PNG_CHUNK_WRITE_ERROR);
|
|
return;
|
|
}
|
|
|
|
prefix_len = (png_uint_32)/*SAFE*/(key_len+lang_len+lang_key_len);
|
|
text_len = strlen(text); /* no trailing '\0' */
|
|
|
|
if (compression != 0)
|
|
{
|
|
if (png_compress_chunk_data(png_ptr, png_iTXt, prefix_len, text,
|
|
text_len))
|
|
data_len = png_length_compressed_chunk_data(png_ptr, prefix_len);
|
|
|
|
else
|
|
return; /* chunk report already issued and ignored */
|
|
}
|
|
|
|
else
|
|
{
|
|
if (text_len > PNG_UINT_31_MAX-prefix_len)
|
|
{
|
|
png_chunk_report(png_ptr, "iTXt: text too long",
|
|
PNG_CHUNK_WRITE_ERROR);
|
|
return;
|
|
}
|
|
|
|
data_len = (png_uint_32)/*SAFE*/text_len;
|
|
}
|
|
|
|
png_write_chunk_header(png_ptr, png_iTXt, prefix_len+data_len);
|
|
png_write_chunk_data(png_ptr, new_key, key_len);
|
|
png_write_chunk_data(png_ptr, lang, lang_len);
|
|
png_write_chunk_data(png_ptr, lang_key, lang_key_len);
|
|
|
|
if (compression != 0)
|
|
png_write_compressed_chunk_data(png_ptr);
|
|
|
|
else
|
|
png_write_chunk_data(png_ptr, text, data_len);
|
|
|
|
png_write_chunk_end(png_ptr);
|
|
}
|
|
#endif /* WRITE_iTXt */
|
|
|
|
#if defined(PNG_WRITE_oFFs_SUPPORTED) ||\
|
|
defined(PNG_WRITE_pCAL_SUPPORTED)
|
|
/* PNG signed integers are saved in 32-bit 2's complement format. ANSI C-90
|
|
* defines a cast of a signed integer to an unsigned integer either to preserve
|
|
* the value, if it is positive, or to calculate:
|
|
*
|
|
* (UNSIGNED_MAX+1) + integer
|
|
*
|
|
* Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the
|
|
* negative integral value is added the result will be an unsigned value
|
|
* correspnding to the 2's complement representation.
|
|
*/
|
|
static int
|
|
save_int_32(png_structrp png_ptr, png_bytep buf, png_int_32 j)
|
|
{
|
|
png_uint_32 i = 0xFFFFFFFFU & (png_uint_32)/*SAFE & CORRECT*/j;
|
|
|
|
if (i != 0x80000000U/*value not permitted*/)
|
|
{
|
|
png_save_uint_32(buf, i);
|
|
return 1;
|
|
}
|
|
|
|
else
|
|
{
|
|
png_chunk_report(png_ptr, "invalid value in oFFS or pCAL",
|
|
PNG_CHUNK_WRITE_ERROR);
|
|
return 0;
|
|
}
|
|
}
|
|
#endif /* WRITE_oFFs || WRITE_pCAL */
|
|
|
|
#ifdef PNG_WRITE_oFFs_SUPPORTED
|
|
/* Write the oFFs chunk */
|
|
void /* PRIVATE */
|
|
png_write_oFFs(png_structrp png_ptr, png_int_32 x_offset, png_int_32 y_offset,
|
|
int unit_type)
|
|
{
|
|
png_byte buf[9];
|
|
|
|
png_debug(1, "in png_write_oFFs");
|
|
|
|
if (unit_type >= PNG_OFFSET_LAST)
|
|
png_warning(png_ptr, "Unrecognized unit type for oFFs chunk");
|
|
|
|
if (save_int_32(png_ptr, buf, x_offset) &&
|
|
save_int_32(png_ptr, buf + 4, y_offset))
|
|
{
|
|
/* unit type is 0 or 1, this has been checked already so the following
|
|
* is safe:
|
|
*/
|
|
buf[8] = unit_type != 0;
|
|
png_write_complete_chunk(png_ptr, png_oFFs, buf, (png_size_t)9);
|
|
}
|
|
}
|
|
#endif /* WRITE_oFFs */
|
|
|
|
#ifdef PNG_WRITE_pCAL_SUPPORTED
|
|
/* Write the pCAL chunk (described in the PNG extensions document) */
|
|
void /* PRIVATE */
|
|
png_write_pCAL(png_structrp png_ptr, png_charp purpose, png_int_32 X0,
|
|
png_int_32 X1, int type, int nparams, png_const_charp units,
|
|
png_charpp params)
|
|
{
|
|
png_uint_32 purpose_len;
|
|
size_t units_len;
|
|
png_byte buf[10];
|
|
png_byte new_purpose[80];
|
|
|
|
png_debug1(1, "in png_write_pCAL (%d parameters)", nparams);
|
|
|
|
if (type >= PNG_EQUATION_LAST)
|
|
png_error(png_ptr, "Unrecognized equation type for pCAL chunk");
|
|
|
|
purpose_len = png_check_keyword(png_ptr, purpose, new_purpose);
|
|
|
|
if (purpose_len == 0)
|
|
png_error(png_ptr, "pCAL: invalid keyword");
|
|
|
|
++purpose_len; /* terminator */
|
|
|
|
png_debug1(3, "pCAL purpose length = %d", (int)purpose_len);
|
|
units_len = strlen(units) + (nparams == 0 ? 0 : 1);
|
|
png_debug1(3, "pCAL units length = %d", (int)units_len);
|
|
|
|
if (save_int_32(png_ptr, buf, X0) &&
|
|
save_int_32(png_ptr, buf + 4, X1))
|
|
{
|
|
png_size_tp params_len = png_voidcast(png_size_tp,
|
|
png_malloc(png_ptr, nparams * sizeof (png_size_t)));
|
|
int i;
|
|
size_t total_len = purpose_len + units_len + 10;
|
|
|
|
/* Find the length of each parameter, making sure we don't count the
|
|
* null terminator for the last parameter.
|
|
*/
|
|
for (i = 0; i < nparams; i++)
|
|
{
|
|
params_len[i] = strlen(params[i]) + (i == nparams - 1 ? 0 : 1);
|
|
png_debug2(3, "pCAL parameter %d length = %lu", i,
|
|
(unsigned long)params_len[i]);
|
|
total_len += params_len[i];
|
|
}
|
|
|
|
png_debug1(3, "pCAL total length = %d", (int)total_len);
|
|
png_write_chunk_header(png_ptr, png_pCAL, (png_uint_32)total_len);
|
|
png_write_chunk_data(png_ptr, new_purpose, purpose_len);
|
|
buf[8] = png_check_byte(png_ptr, type);
|
|
buf[9] = png_check_byte(png_ptr, nparams);
|
|
png_write_chunk_data(png_ptr, buf, (png_size_t)10);
|
|
png_write_chunk_data(png_ptr, (png_const_bytep)units,
|
|
(png_size_t)units_len);
|
|
|
|
for (i = 0; i < nparams; i++)
|
|
png_write_chunk_data(png_ptr, (png_const_bytep)params[i],
|
|
params_len[i]);
|
|
|
|
png_free(png_ptr, params_len);
|
|
png_write_chunk_end(png_ptr);
|
|
}
|
|
}
|
|
#endif /* WRITE_pCAL */
|
|
|
|
#ifdef PNG_WRITE_sCAL_SUPPORTED
|
|
/* Write the sCAL chunk */
|
|
void /* PRIVATE */
|
|
png_write_sCAL_s(png_structrp png_ptr, int unit, png_const_charp width,
|
|
png_const_charp height)
|
|
{
|
|
png_byte buf[64];
|
|
png_size_t wlen, hlen, total_len;
|
|
|
|
png_debug(1, "in png_write_sCAL_s");
|
|
|
|
wlen = strlen(width);
|
|
hlen = strlen(height);
|
|
total_len = wlen + hlen + 2;
|
|
|
|
if (total_len > 64)
|
|
{
|
|
png_warning(png_ptr, "Can't write sCAL (buffer too small)");
|
|
return;
|
|
}
|
|
|
|
buf[0] = png_check_byte(png_ptr, unit);
|
|
memcpy(buf + 1, width, wlen + 1); /* Append the '\0' here */
|
|
memcpy(buf + wlen + 2, height, hlen); /* Do NOT append the '\0' here */
|
|
|
|
png_debug1(3, "sCAL total length = %u", (unsigned int)total_len);
|
|
png_write_complete_chunk(png_ptr, png_sCAL, buf, total_len);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_pHYs_SUPPORTED
|
|
/* Write the pHYs chunk */
|
|
void /* PRIVATE */
|
|
png_write_pHYs(png_structrp png_ptr, png_uint_32 x_pixels_per_unit,
|
|
png_uint_32 y_pixels_per_unit,
|
|
int unit_type)
|
|
{
|
|
png_byte buf[9];
|
|
|
|
png_debug(1, "in png_write_pHYs");
|
|
|
|
if (unit_type >= PNG_RESOLUTION_LAST)
|
|
png_warning(png_ptr, "Unrecognized unit type for pHYs chunk");
|
|
|
|
png_save_uint_32(buf, x_pixels_per_unit);
|
|
png_save_uint_32(buf + 4, y_pixels_per_unit);
|
|
buf[8] = png_check_byte(png_ptr, unit_type);
|
|
|
|
png_write_complete_chunk(png_ptr, png_pHYs, buf, (png_size_t)9);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PNG_WRITE_tIME_SUPPORTED
|
|
/* Write the tIME chunk. Use either png_convert_from_struct_tm()
|
|
* or png_convert_from_time_t(), or fill in the structure yourself.
|
|
*/
|
|
void /* PRIVATE */
|
|
png_write_tIME(png_structrp png_ptr, png_const_timep mod_time)
|
|
{
|
|
png_byte buf[7];
|
|
|
|
png_debug(1, "in png_write_tIME");
|
|
|
|
if (mod_time->month > 12 || mod_time->month < 1 ||
|
|
mod_time->day > 31 || mod_time->day < 1 ||
|
|
mod_time->hour > 23 || mod_time->second > 60)
|
|
{
|
|
png_warning(png_ptr, "Invalid time specified for tIME chunk");
|
|
return;
|
|
}
|
|
|
|
png_save_uint_16(buf, mod_time->year);
|
|
buf[2] = mod_time->month;
|
|
buf[3] = mod_time->day;
|
|
buf[4] = mod_time->hour;
|
|
buf[5] = mod_time->minute;
|
|
buf[6] = mod_time->second;
|
|
|
|
png_write_complete_chunk(png_ptr, png_tIME, buf, (png_size_t)7);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
png_end_IDAT(png_structrp png_ptr)
|
|
{
|
|
png_zlib_statep ps = png_ptr->zlib_state;
|
|
|
|
png_ptr->zowner = 0U; /* release the stream */
|
|
|
|
if (ps != NULL)
|
|
png_deflate_release(png_ptr, ps, 1/*check*/);
|
|
}
|
|
|
|
static void
|
|
png_write_IDAT(png_structrp png_ptr, int flush)
|
|
{
|
|
png_zlib_statep ps = png_ptr->zlib_state;
|
|
png_uint_32 IDAT_size;
|
|
|
|
/* Check for a correctly initialized list, the requirement that the end
|
|
* pointer is NULL means that the end of the list can be easily detected.
|
|
*/
|
|
affirm(ps != NULL && ps->s.end != NULL && *ps->s.end == NULL);
|
|
png_zlib_compress_validate(&png_ptr->zlib_state->s, 0/*in_use*/);
|
|
|
|
IDAT_size = png_ptr->IDAT_size;
|
|
if (IDAT_size == 0U)
|
|
{
|
|
switch (pz_get(ps, IDAT, png_level, PNG_DEFAULT_COMPRESSION_LEVEL))
|
|
{
|
|
case PNG_COMPRESSION_COMPAT: /* Legacy */
|
|
IDAT_size = 8192U;
|
|
break;
|
|
|
|
case PNG_COMPRESSION_LOW_MEMORY:
|
|
case PNG_COMPRESSION_HIGH_SPEED:
|
|
case PNG_COMPRESSION_LOW:
|
|
/* png_compress uses PNG_ROW_BUFFER_SIZE buffers for the compressed
|
|
* data. Optimize to allocate only one of these:
|
|
*/
|
|
IDAT_size = PNG_ROW_BUFFER_SIZE;
|
|
break;
|
|
|
|
default:
|
|
case PNG_COMPRESSION_MEDIUM:
|
|
IDAT_size = PNG_ZBUF_SIZE;
|
|
|
|
case PNG_COMPRESSION_HIGH_READ_SPEED:
|
|
/* Assume the reader reads partial IDAT chunks (pretty much a
|
|
* requirement given that some PNG encoders produce just one IDAT)
|
|
*/
|
|
case PNG_COMPRESSION_HIGH:
|
|
/* This doesn't control the amount of memory allocated unless the
|
|
* PNG IDAT data really is this big.
|
|
*
|
|
* TODO: review handling out-of-memory from png_compress() by
|
|
* flushing an IDAT.
|
|
*/
|
|
IDAT_size = PNG_UINT_31_MAX;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Write IDAT chunks while either 'flush' is true or there are at
|
|
* least png_ptr->IDAT_size bytes available to be written.
|
|
*/
|
|
for (;;)
|
|
{
|
|
png_uint_32 len = IDAT_size;
|
|
|
|
if (ps->s.overflow == 0U)
|
|
{
|
|
png_uint_32 avail = ps->s.len;
|
|
|
|
if (avail < len)
|
|
{
|
|
/* When end_of_image is true everything gets written, otherwise
|
|
* there must be at least IDAT_size bytes available.
|
|
*/
|
|
if (!flush)
|
|
return;
|
|
|
|
if (avail == 0U)
|
|
break;
|
|
|
|
len = avail;
|
|
}
|
|
}
|
|
|
|
png_write_chunk_header(png_ptr, png_IDAT, len);
|
|
|
|
/* Write bytes from the buffer list, adjusting {overflow,len} as they are
|
|
* written.
|
|
*/
|
|
do
|
|
{
|
|
png_compression_bufferp next = ps->s.list;
|
|
unsigned int avail = sizeof next->output;
|
|
unsigned int start = ps->s.start;
|
|
unsigned int written;
|
|
|
|
affirm(next != NULL);
|
|
|
|
if (next->next == NULL) /* end of list */
|
|
{
|
|
/* The z_stream should always be pointing into this output buffer,
|
|
* the buffer may not be full:
|
|
*/
|
|
debug(ps->s.zs.next_out + ps->s.zs.avail_out ==
|
|
next->output + sizeof next->output);
|
|
avail -= ps->s.zs.avail_out;
|
|
}
|
|
|
|
else /* not end of list */
|
|
debug((ps->s.zs.next_out < next->output ||
|
|
ps->s.zs.next_out > next->output + sizeof next->output) &&
|
|
(ps->s.overflow > 0 ||
|
|
ps->s.start + ps->s.len >= sizeof next->output));
|
|
|
|
/* First, if this is the very first IDAT (PNG_HAVE_IDAT not set)
|
|
* fix the Zlib CINFO field if required:
|
|
*/
|
|
if ((png_ptr->mode & PNG_HAVE_IDAT) == 0U &&
|
|
avail >= start+2U /* enough for the zlib header */)
|
|
{
|
|
debug(start == 0U);
|
|
fix_cinfo(ps, next->output+start, png_image_size(png_ptr));
|
|
}
|
|
|
|
else /* always expect to see at least 2 bytes: */
|
|
debug((png_ptr->mode & PNG_HAVE_IDAT) != 0U);
|
|
|
|
/* Set this now to prevent the above happening again second time round
|
|
* the loop:
|
|
*/
|
|
png_ptr->mode |= PNG_HAVE_IDAT;
|
|
|
|
if (avail <= start+len)
|
|
{
|
|
/* Write all of this buffer: */
|
|
affirm(avail > start); /* else overflow on the subtract */
|
|
written = avail-start;
|
|
png_write_chunk_data(png_ptr, next->output+start, written);
|
|
|
|
/* At the end there are no buffers in the list but the z_stream
|
|
* still points into the old (just released) buffer. This can
|
|
* happen when the old buffer is not full if the compressed bytes
|
|
* exactly match the IDAT length; it should always happen when
|
|
* end_of_image is set.
|
|
*/
|
|
ps->s.list = next->next;
|
|
|
|
if (next->next == NULL)
|
|
{
|
|
debug(avail == start+len);
|
|
ps->s.end = &ps->s.list;
|
|
ps->s.zs.next_out = NULL;
|
|
ps->s.zs.avail_out = 0U;
|
|
}
|
|
|
|
next->next = ps->stash;
|
|
ps->stash = next;
|
|
ps->s.start = 0U;
|
|
}
|
|
|
|
else /* write only part of this buffer */
|
|
{
|
|
written = len;
|
|
png_write_chunk_data(png_ptr, next->output+start, written);
|
|
ps->s.start = (unsigned int)/*SAFE*/(start + written);
|
|
}
|
|
|
|
/* 'written' bytes were written: */
|
|
len -= written;
|
|
|
|
if (written <= ps->s.len)
|
|
ps->s.len -= written;
|
|
|
|
else
|
|
{
|
|
affirm(ps->s.overflow > 0U);
|
|
--ps->s.overflow;
|
|
ps->s.len += 0x80000000U - written;
|
|
UNTESTED
|
|
}
|
|
}
|
|
while (len > 0U);
|
|
|
|
png_write_chunk_end(png_ptr);
|
|
}
|
|
|
|
/* avail == 0 && flush */
|
|
png_end_IDAT(png_ptr);
|
|
png_ptr->mode |= PNG_AFTER_IDAT;
|
|
}
|
|
|
|
/* This is is a convenience wrapper to handle IDAT compression; it takes a
|
|
* pointer to the input data and places no limit on the size of the output but
|
|
* is otherwise the same as png_compress(). It also handles the use of the
|
|
* stash (only used for IDAT compression.)
|
|
*/
|
|
static int
|
|
png_compress_IDAT_data(png_structrp png_ptr, png_zlib_statep ps,
|
|
png_zlib_compressp pz, png_const_voidp input, uInt input_len, int flush)
|
|
{
|
|
/* Delay initialize the z_stream. */
|
|
if (png_ptr->zowner != png_IDAT)
|
|
png_deflate_claim(png_ptr, png_IDAT, 0U);
|
|
|
|
affirm(png_ptr->zowner == png_IDAT && pz->end != NULL && *pz->end == NULL);
|
|
|
|
/* z_stream::{next,avail}_out are set by png_compress to point into the
|
|
* buffer list. next_in must be set here, avail_in comes from the input_len
|
|
* parameter:
|
|
*/
|
|
pz->zs.next_in = PNGZ_INPUT_CAST(png_voidcast(const Bytef*, input));
|
|
*pz->end = ps->stash; /* May be NULL */
|
|
ps->stash = NULL;
|
|
|
|
/* zlib buffers the output, the maximum amount of compressed data that can be
|
|
* produced here is governed by the amount of buffering.
|
|
*/
|
|
{
|
|
int ret = png_compress(pz, input_len, 0U/*unlimited*/, flush);
|
|
|
|
affirm(pz->end != NULL && ps->stash == NULL);
|
|
ps->stash = *pz->end; /* May be NULL */
|
|
*pz->end = NULL;
|
|
|
|
/* Z_FINISH should give Z_STREAM_END, everything else should give Z_OK, in
|
|
* either case all the input should have been consumed:
|
|
*/
|
|
implies(ret == Z_OK || ret == Z_FINISH, pz->zs.avail_in == 0U &&
|
|
(ret == Z_STREAM_END) == (flush == Z_FINISH));
|
|
pz->zs.next_in = NULL;
|
|
pz->zs.avail_in = 0U; /* safety */
|
|
png_zlib_compress_validate(pz, 0/*in_use*/);
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Compress some image data using the main png_zlib_compress. Write the result
|
|
* out if there is sufficient data.
|
|
*/
|
|
static void
|
|
png_compress_IDAT(png_structrp png_ptr, png_const_voidp input, uInt input_len,
|
|
int flush)
|
|
{
|
|
png_zlib_statep ps = png_ptr->zlib_state;
|
|
int ret = png_compress_IDAT_data(png_ptr, ps, &ps->s, input, input_len,
|
|
flush);
|
|
|
|
/* Check the return code. */
|
|
if (ret == Z_OK || ret == Z_STREAM_END)
|
|
png_write_IDAT(png_ptr, flush == Z_FINISH);
|
|
|
|
else /* ret != Z_OK && ret != Z_STREAM_END */
|
|
{
|
|
/* This is an error condition. It is fatal. */
|
|
png_end_IDAT(png_ptr);
|
|
png_zstream_error(&ps->s.zs, ret);
|
|
png_error(png_ptr, ps->s.zs.msg);
|
|
}
|
|
}
|
|
|
|
/* This is called at the end of every row to handle the required callbacks and
|
|
* advance png_struct::row_number and png_struct::pass.
|
|
*/
|
|
static void
|
|
png_write_end_row(png_structrp png_ptr, int flush)
|
|
{
|
|
png_uint_32 row_number = png_ptr->row_number;
|
|
unsigned int pass = png_ptr->pass;
|
|
|
|
debug(pass < 7U);
|
|
implies(flush == Z_FINISH, png_ptr->zowner == 0U);
|
|
|
|
/* API NOTE: the write callback is made before any changes to the row number
|
|
* or pass however, in 1.7.0, the zlib stream can be closed before the
|
|
* callback is made (this is new). The application flush function happens
|
|
* afterward as was the case before. In 1.7.0 this is solely determined by
|
|
* the order of the code that follows.
|
|
*/
|
|
if (png_ptr->write_row_fn != NULL)
|
|
png_ptr->write_row_fn(png_ptr, row_number, pass);
|
|
|
|
# ifdef PNG_WRITE_FLUSH_SUPPORTED
|
|
if (flush == Z_SYNC_FLUSH)
|
|
{
|
|
if (png_ptr->output_flush_fn != NULL)
|
|
png_ptr->output_flush_fn(png_ptr);
|
|
png_ptr->zlib_state->flush_rows = 0U;
|
|
}
|
|
# else /* !WRITE_FLUSH */
|
|
PNG_UNUSED(flush)
|
|
# endif /* !WRITE_FLUSH */
|
|
|
|
/* Finally advance to the next row/pass: */
|
|
if (png_ptr->interlaced == PNG_INTERLACE_NONE)
|
|
{
|
|
debug(row_number < png_ptr->height);
|
|
|
|
if (++row_number == png_ptr->height) /* last row */
|
|
{
|
|
row_number = 0U;
|
|
debug(flush == Z_FINISH);
|
|
png_ptr->pass = 7U;
|
|
}
|
|
}
|
|
|
|
# ifdef PNG_WRITE_INTERLACING_SUPPORTED
|
|
else /* interlaced */ if (png_ptr->do_interlace)
|
|
{
|
|
/* This gets called only for rows that are processed; i.e. rows that
|
|
* are in the pass of a pass which is itself in the output.
|
|
*/
|
|
debug(row_number < png_ptr->height &&
|
|
PNG_PASS_IN_IMAGE(png_ptr->width, png_ptr->height, pass) &&
|
|
pass <= PNG_LAST_PASS(png_ptr->width, png_ptr->height) &&
|
|
PNG_ROW_IN_INTERLACE_PASS(row_number, pass));
|
|
|
|
/* NOTE: the last row of the original image may not be in the pass, in
|
|
* this case the code which skipped the row must do the increment
|
|
* below! See 'interlace_row' in pngwrite.c and the code in
|
|
* png_write_png_rows below.
|
|
*
|
|
* In that case an earlier row will be the last one in the pass (if the
|
|
* pass is in the output), check this here:
|
|
*/
|
|
implies(pass == PNG_LAST_PASS(png_ptr->width, png_ptr->height) &&
|
|
PNG_LAST_PASS_ROW(row_number, pass, png_ptr->height),
|
|
flush == Z_FINISH);
|
|
|
|
if (++row_number == png_ptr->height) /* last row */
|
|
{
|
|
row_number = 0U;
|
|
png_ptr->pass = 0x7U & ++pass;
|
|
}
|
|
}
|
|
# endif /* WRITE_INTERLACING */
|
|
|
|
else /* application does interlace */
|
|
{
|
|
implies(png_ptr->height == 1U, pass != 6U);
|
|
debug(PNG_PASS_IN_IMAGE(png_ptr->width, png_ptr->height, pass) &&
|
|
row_number < PNG_PASS_ROWS(png_ptr->height, pass));
|
|
|
|
if (++row_number == PNG_PASS_ROWS(png_ptr->height, pass))
|
|
{
|
|
/* last row in this pass, next one may be empty. */
|
|
row_number = 0U;
|
|
|
|
do
|
|
++pass;
|
|
while (pass < 7U &&
|
|
!PNG_PASS_IN_IMAGE(png_ptr->width, png_ptr->height, pass));
|
|
|
|
implies(png_ptr->height == 1U, pass != 6U);
|
|
implies(pass == 7U, flush == Z_FINISH);
|
|
png_ptr->pass = 0x7U & pass;
|
|
}
|
|
}
|
|
|
|
png_ptr->row_number = row_number;
|
|
}
|
|
|
|
#ifdef PNG_WRITE_FLUSH_SUPPORTED
|
|
/* Flush the current output buffers now */
|
|
void PNGAPI
|
|
png_write_flush(png_structrp png_ptr)
|
|
{
|
|
png_debug(1, "in png_write_flush");
|
|
|
|
/* Force a flush at the end of the current row by setting 'flush_rows' to the
|
|
* maximum:
|
|
*/
|
|
if (png_ptr != NULL && png_ptr->zlib_state != NULL)
|
|
png_ptr->zlib_state->flush_rows = 0xEFFFFFFF;
|
|
}
|
|
|
|
/* Return the correct flush to use */
|
|
static int
|
|
row_flush(png_zlib_statep ps, unsigned int row_info_flags)
|
|
{
|
|
if (PNG_IDAT_END(row_info_flags))
|
|
return Z_FINISH;
|
|
|
|
else if ((row_info_flags & png_row_end) != 0 &&
|
|
++ps->flush_rows >= ps->flush_dist)
|
|
return Z_SYNC_FLUSH;
|
|
|
|
else
|
|
return Z_NO_FLUSH;
|
|
}
|
|
#else /* !WRITE_FLUSH */
|
|
# define row_flush(ps, ri) (PNG_IDAT_END(ri) ? Z_FINISH : Z_NO_FLUSH)
|
|
#endif /* !WRITE_FLUSH */
|
|
|
|
static void
|
|
write_filtered_row(png_structrp png_ptr, png_const_voidp filtered_row,
|
|
unsigned int row_bytes, unsigned int filter /*if at start of row*/,
|
|
int flush)
|
|
{
|
|
/* This handles writing a row that has been filtered, or did not need to be
|
|
* filtered. If the data row has a partial pixel it must have been handled
|
|
* correctly in the caller; filters generate a full 8 bits even if the pixel
|
|
* only has one significant bit!
|
|
*/
|
|
debug(row_bytes > 0);
|
|
affirm(row_bytes <= ZLIB_IO_MAX); /* I.e. it fits in a uInt */
|
|
|
|
if (filter < PNG_FILTER_VALUE_LAST) /* start of row */
|
|
{
|
|
png_byte buffer[1];
|
|
|
|
buffer[0] = PNG_BYTE(filter);
|
|
png_compress_IDAT(png_ptr, buffer, 1U/*len*/, Z_NO_FLUSH);
|
|
}
|
|
|
|
png_compress_IDAT(png_ptr, filtered_row, row_bytes, flush);
|
|
}
|
|
|
|
static void
|
|
write_unfiltered_rowbits(png_structrp png_ptr, png_const_bytep filtered_row,
|
|
unsigned int row_bits, png_byte filter /*if at start of row*/,
|
|
int flush)
|
|
{
|
|
/* Same as above, but it correctly clears the unused bits in a partial
|
|
* byte.
|
|
*/
|
|
const png_uint_32 row_bytes = row_bits >> 3;
|
|
|
|
debug(filter == PNG_FILTER_VALUE_NONE || filter == PNG_FILTER_VALUE_LAST);
|
|
|
|
if (row_bytes > 0U)
|
|
{
|
|
row_bits -= row_bytes << 3;
|
|
write_filtered_row(png_ptr, filtered_row, row_bytes, filter,
|
|
row_bits == 0U ? flush : Z_NO_FLUSH);
|
|
filter = PNG_FILTER_VALUE_LAST; /* written */
|
|
}
|
|
|
|
/* Handle a partial byte. */
|
|
if (row_bits > 0U)
|
|
{
|
|
png_byte buffer[1];
|
|
|
|
buffer[0] = PNG_BYTE(filtered_row[row_bytes] & ~(0xFFU >> row_bits));
|
|
write_filtered_row(png_ptr, buffer, 1U, filter, flush);
|
|
}
|
|
}
|
|
|
|
#ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
static void
|
|
filter_block_singlebyte(unsigned int row_bytes, png_bytep sub_row,
|
|
png_bytep up_row, png_bytep avg_row, png_bytep paeth_row,
|
|
png_const_bytep row, png_const_bytep prev_row, png_bytep prev_pixels)
|
|
{
|
|
/* Calculate rows for all four filters where the input has one byte per pixel
|
|
* (more accurately per filter-unit).
|
|
*/
|
|
png_byte a = prev_pixels[0];
|
|
png_byte c = prev_pixels[1];
|
|
|
|
while (row_bytes-- > 0U)
|
|
{
|
|
const png_byte x = *row++;
|
|
const png_byte b = prev_row == NULL ? 0U : *prev_row++;
|
|
|
|
/* Calculate each filtered byte in turn: */
|
|
if (sub_row != NULL) *sub_row++ = 0xFFU & (x - a);
|
|
if (up_row != NULL) *up_row++ = 0xFFU & (x - b);
|
|
if (avg_row != NULL) *avg_row++ = 0xFFU & (x - (a+b)/2U);
|
|
|
|
/* Paeth is a little more difficult: */
|
|
if (paeth_row != NULL)
|
|
{
|
|
int pa = b-c; /* a+b-c - a */
|
|
int pb = a-c; /* a+b-c - b */
|
|
int pc = pa+pb; /* a+b-c - c = b-c + a-c */
|
|
png_byte p = a;
|
|
|
|
pa = abs(pa);
|
|
pb = abs(pb);
|
|
if (pa > pb) pa = pb, p = b;
|
|
if (pa > abs(pc)) p = c;
|
|
|
|
*paeth_row++ = 0xFFU & (x - p);
|
|
}
|
|
|
|
/* And set a and c for the next pixel: */
|
|
a = x;
|
|
c = b;
|
|
}
|
|
|
|
/* Store a and c for the next block: */
|
|
prev_pixels[0] = a;
|
|
prev_pixels[1] = c;
|
|
}
|
|
|
|
static void
|
|
filter_block_multibyte(unsigned int row_bytes,
|
|
const unsigned int bpp, png_bytep sub_row, png_bytep up_row,
|
|
png_bytep avg_row, png_bytep paeth_row, png_const_bytep row,
|
|
png_const_bytep prev_row, png_bytep prev_pixels)
|
|
{
|
|
/* Calculate rows for all four filters, the input is a block of bytes such
|
|
* that row_bytes is a multiple of bpp. bpp can be 2, 3, 4, 6 or 8.
|
|
* prev_pixels will be updated to the last pixels processed.
|
|
*/
|
|
while (row_bytes >= bpp)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i=0; i<bpp; ++i)
|
|
{
|
|
const png_byte a = prev_pixels[i];
|
|
const png_byte c = prev_pixels[i+bpp];
|
|
const png_byte b = prev_row == NULL ? 0U : *prev_row++;
|
|
const png_byte x = *row++;
|
|
|
|
/* Save for the next pixel: */
|
|
prev_pixels[i] = x;
|
|
prev_pixels[i+bpp] = b;
|
|
|
|
/* Calculate each filtered byte in turn: */
|
|
if (sub_row != NULL) *sub_row++ = 0xFFU & (x - a);
|
|
if (up_row != NULL) *up_row++ = 0xFFU & (x - b);
|
|
if (avg_row != NULL) *avg_row++ = 0xFFU & (x - (a+b)/2U);
|
|
|
|
/* Paeth is a little more difficult: */
|
|
if (paeth_row != NULL)
|
|
{
|
|
int pa = b-c; /* a+b-c - a */
|
|
int pb = a-c; /* a+b-c - b */
|
|
int pc = pa+pb; /* a+b-c - c = b-c + a-c */
|
|
png_byte p = a;
|
|
|
|
pa = abs(pa);
|
|
pb = abs(pb);
|
|
if (pa > pb) pa = pb, p = b;
|
|
if (pa > abs(pc)) p = c;
|
|
|
|
*paeth_row++ = 0xFFU & (x - p);
|
|
}
|
|
}
|
|
|
|
row_bytes -= i;
|
|
}
|
|
}
|
|
|
|
static void
|
|
filter_block(png_const_bytep prev_row, png_bytep prev_pixels,
|
|
png_const_bytep unfiltered_row, unsigned int row_bits,
|
|
const unsigned int bpp, png_bytep sub_row, png_bytep up_row,
|
|
png_bytep avg_row, png_bytep paeth_row)
|
|
{
|
|
const unsigned int row_bytes = row_bits >> 3; /* complete bytes */
|
|
|
|
if (bpp <= 8U)
|
|
{
|
|
/* There may be a partial byte at the end. */
|
|
if (row_bytes > 0)
|
|
filter_block_singlebyte(row_bytes, sub_row, up_row, avg_row, paeth_row,
|
|
unfiltered_row, prev_row, prev_pixels);
|
|
|
|
/* The partial byte must be handled correctly here; both the previous row
|
|
* value and the current value need to have non-present bits cleared.
|
|
*/
|
|
if ((row_bits & 7U) != 0)
|
|
{
|
|
const png_byte mask = PNG_BYTE(~(0xFFU >> (row_bits & 7U)));
|
|
png_byte buffer[2];
|
|
|
|
buffer[0] = unfiltered_row[row_bytes] & mask;
|
|
|
|
if (prev_row != NULL)
|
|
buffer[1U] = prev_row[row_bytes] & mask;
|
|
|
|
else
|
|
buffer[1U] = 0U;
|
|
|
|
filter_block_singlebyte(1U,
|
|
sub_row == NULL ? NULL : sub_row+row_bytes,
|
|
up_row == NULL ? NULL : up_row+row_bytes,
|
|
avg_row == NULL ? NULL : avg_row+row_bytes,
|
|
paeth_row == NULL ? NULL : paeth_row+row_bytes,
|
|
buffer, buffer+1U, prev_pixels);
|
|
}
|
|
}
|
|
|
|
else
|
|
filter_block_multibyte(row_bytes, bpp >> 3,
|
|
sub_row, up_row, avg_row, paeth_row,
|
|
unfiltered_row, prev_row, prev_pixels);
|
|
}
|
|
|
|
static void
|
|
filter_row(png_structrp png_ptr, png_const_bytep prev_row,
|
|
png_bytep prev_pixels, png_const_bytep unfiltered_row,
|
|
unsigned int row_bits, unsigned int bpp, unsigned int filter,
|
|
int start_of_row, int flush)
|
|
{
|
|
/* filters_to_try identifies a single filter and it is not PNG_FILTER_NONE.
|
|
*/
|
|
png_byte filtered_row[PNG_ROW_BUFFER_SIZE];
|
|
|
|
affirm((row_bits+7U) >> 3 <= PNG_ROW_BUFFER_SIZE &&
|
|
filter >= PNG_FILTER_VALUE_SUB && filter <= PNG_FILTER_VALUE_PAETH);
|
|
debug((row_bits % bpp) == 0U);
|
|
|
|
filter_block(prev_row, prev_pixels, unfiltered_row, row_bits, bpp,
|
|
filter == PNG_FILTER_VALUE_SUB ? filtered_row : NULL,
|
|
filter == PNG_FILTER_VALUE_UP ? filtered_row : NULL,
|
|
filter == PNG_FILTER_VALUE_AVG ? filtered_row : NULL,
|
|
filter == PNG_FILTER_VALUE_PAETH ? filtered_row : NULL);
|
|
|
|
write_filtered_row(png_ptr, filtered_row, (row_bits+7U)>>3,
|
|
start_of_row ? filter : PNG_FILTER_VALUE_LAST, flush);
|
|
}
|
|
|
|
/* Allow the application to select one or more row filters to use. */
|
|
static png_int_32
|
|
set_filter(png_zlib_statep ps, unsigned int filtersIn)
|
|
{
|
|
/* Notice that PNG_NO_FILTERS is 0 and passes this test; this is OK because
|
|
* filters then gets set to PNG_FILTER_NONE, as is required.
|
|
*
|
|
* The argument to this routine is actually an (int), but conversion to
|
|
* (unsigned int) is safe because it leaves the top bits set which results in
|
|
* PNG_EDOM below.
|
|
*/
|
|
if (filtersIn < PNG_FILTER_NONE)
|
|
filtersIn = PNG_FILTER_MASK(filtersIn);
|
|
|
|
/* PNG_ALL_FILTERS is a constant, unfortunately it is nominally signed, for
|
|
* historical reasons, hence the PNG_BIC_MASK here.
|
|
*/
|
|
if ((filtersIn & PNG_BIC_MASK(PNG_ALL_FILTERS)) == 0U)
|
|
{
|
|
# ifndef PNG_SELECT_FILTER_SUPPORTED
|
|
filtersIn &= -filtersIn; /* Use lowest set bit */
|
|
# endif /* !SELECT_FILTER */
|
|
|
|
return ps->filter_mask = filtersIn & PNG_ALL_FILTERS;
|
|
}
|
|
|
|
else /* Out-of-range filtersIn: */
|
|
return PNG_EDOM;
|
|
}
|
|
#endif /* WRITE_FILTER */
|
|
|
|
#ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
void /* PRIVATE */
|
|
png_write_start_IDAT(png_structrp png_ptr)
|
|
{
|
|
png_zlib_statep ps = get_zlib_state(png_ptr);
|
|
int png_level;
|
|
|
|
/* Set up the IDAT compression state. Expect the state to have been released
|
|
* by the previous owner, but it doesn't much matter if there was an error.
|
|
* Note that the stream is not claimed yet.
|
|
*/
|
|
debug(png_ptr->zowner == 0U);
|
|
|
|
/* This sets the buffer limits and write_row_size, which is used below. */
|
|
png_zlib_state_set_buffer_limits(png_ptr, ps);
|
|
|
|
/* Now default the filter mask if it hasn't been set already: */
|
|
png_level = pz_get(ps, IDAT, png_level, PNG_DEFAULT_COMPRESSION_LEVEL);
|
|
|
|
if (ps->filter_mask == 0)
|
|
{
|
|
# ifdef PNG_SELECT_FILTER_SUPPORTED
|
|
/* If the bit depth is less than 8, so pixels are not byte aligned, PNG
|
|
* filtering hardly ever helps because there is no correlation between
|
|
* the bytes on which the filter works and the actual pixel values.
|
|
* Note that GIF is a whole lot better at this because it uses LZW to
|
|
* compress a bit-stream, not a byte stream as in the deflate
|
|
* implementation of LZ77.
|
|
*
|
|
* If the row size is less than 256 bytes filter selection algorithms
|
|
* are flakey because the restricted range of codes in each row can
|
|
* lead to poor selection of filters, particularly if the bytes in the
|
|
* image are themselves limited. (This happens when a low bit-depth
|
|
* image is encoded with 8-bit channels.)
|
|
*
|
|
* By experiment with the test set of images the breakpoint between
|
|
* not filtering and filtering based on which gives best compression by
|
|
* row size is as follows:
|
|
*
|
|
* NONE FAST ALL
|
|
* PAL <=anything [even 8-bit palette images larger if filtered]
|
|
* G<8 <=anything [low bit depth gray images]
|
|
* G8 <=16 [+~1%] >16
|
|
* G16 <=128 [+~1%] >128
|
|
* GA8 <=64 [+~1%] >64
|
|
* GA16 <=anything [always better without filtering!]
|
|
* RGB8 <=32 [+0-2%(1)] >32
|
|
* RGB16 <=1024 [+~1%] >1024
|
|
* RGBA8 <=64 [+~~1%] >64
|
|
* RGBA16 <=128 {+~0.5%] >128
|
|
*
|
|
* (1) The largest 24-bit RGB image (RGB8) faired better, by 1.3%,
|
|
* with 'fast' filters. This is assumed to be random.
|
|
*
|
|
* Aggregated across all color types and bit depths the breakpoint for
|
|
* filtering is >16 bytes, but the size increase only exceeds 0.5% for
|
|
* images with rows between 64 and 128 bytes, hence the choices below.
|
|
*
|
|
* Across all the test images that change (not including selecting just
|
|
* the 'fast' filters by default) does not change the compressed size
|
|
* significantly (+0.06% across the whole test set), however it does
|
|
* substantially increase the number of images without filtering.
|
|
*
|
|
* Using just none and sub filters results in overall compressed sizes
|
|
* somewhere around the geometric mean of no filtering and 'fast'.
|
|
*
|
|
* The image size also plays a part. Filtering is not an advantage for
|
|
* images of size <= 512 bytes. This is also reflected below.
|
|
*
|
|
* NOTE: the libpng 1.6 (and earlier) algorithm seems to work
|
|
* because it biases the byte codes in the output towards 0 and 255.
|
|
* Zlib doesn't care what the codes are, but Huffman encoding always
|
|
* benefits from a biased distribution and the filters themselves were
|
|
* designed to produce values in this range.
|
|
*
|
|
* In a raw comparison with the legacy code selection of specific sets
|
|
* of filters always increased the compressed size of the test set, as
|
|
* follows:
|
|
*
|
|
* PNG_ALL_FILTERS: +0.26%
|
|
* PNG_FAST_FILTERS: +1.9%
|
|
* NONE+SUB: +5.8%
|
|
* PNG_NO_FILTERS: +14%
|
|
*
|
|
* This mainly proves that a static selection of filters (without
|
|
* considering the PNG format) is always worse than the legacy
|
|
* algorithm below.
|
|
*
|
|
* NOTE: ps->filter_mask must be set to a mask value, not a simple
|
|
* PNG_FILTER_VALUE_ number.
|
|
*/
|
|
if (ps->write_row_size == 0U /* row cannot be buffered */)
|
|
ps->filter_mask = PNG_FILTER_NONE;
|
|
|
|
else if (png_level == PNG_COMPRESSION_COMPAT/* Legacy */)
|
|
{
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE ||
|
|
png_ptr->bit_depth < 8U)
|
|
ps->filter_mask = PNG_FILTER_NONE;
|
|
|
|
else
|
|
ps->filter_mask = PNG_ALL_FILTERS;
|
|
}
|
|
|
|
/* NOTE: overall with the following size tests (row and image size) the
|
|
* test set of images end up 0.06% larger, however some color types are
|
|
* smaller and some larger; the differences are minute. If the test is
|
|
* <=128 (which means <=129 bytes per row with the filter byte) the
|
|
* resultant inclusion of 32x32 RGBA images results in significantly
|
|
* increased compressed size.
|
|
*
|
|
* The test on png_level captures the following settings:
|
|
*
|
|
* PNG_COMPRESSION_LOW_MEMORY
|
|
* PNG_COMPRESSION_HIGH_SPEED
|
|
* PNG_COMPRESSION_HIGH_READ_SPEED
|
|
*
|
|
* NOTE: this relies on the exact values in png.h!
|
|
*/
|
|
else if (png_level <= PNG_COMPRESSION_HIGH_READ_SPEED
|
|
|| png_ptr->color_type == PNG_COLOR_TYPE_PALETTE
|
|
|| png_ptr->bit_depth < 8U
|
|
|| ps->write_row_size/*does not include filter*/ < 128U
|
|
|| png_image_size(png_ptr) <= 512U)
|
|
ps->filter_mask = PNG_FILTER_NONE;
|
|
|
|
/* ELSE: there are at least 128 bytes in every row and the pixels
|
|
* are multiples of a byte.
|
|
*/
|
|
else switch (png_level)
|
|
{
|
|
default: /* For GCC */
|
|
case PNG_COMPRESSION_LOW:
|
|
ps->filter_mask = PNG_FILTER_NONE+PNG_FILTER_SUB;
|
|
|
|
case PNG_COMPRESSION_MEDIUM:
|
|
ps->filter_mask = PNG_FAST_FILTERS;
|
|
|
|
case PNG_COMPRESSION_HIGH:
|
|
ps->filter_mask = PNG_ALL_FILTERS;
|
|
}
|
|
# else /* !SELECT_FILTER */
|
|
ps->filter_mask = PNG_FILTER_NONE;
|
|
# endif /* !SELECT_FILTER */
|
|
}
|
|
}
|
|
|
|
static png_byte
|
|
png_write_start_row(png_zlib_statep ps, int start_of_pass, int no_previous_row)
|
|
/* Called at the start of a row to set up anything required for filter
|
|
* handling in the row. Sets png_zlib_state::filters to a single filter.
|
|
*/
|
|
{
|
|
unsigned int mask = ps->filter_mask;
|
|
|
|
/* If we see a previous-row filter in mask and png_zlib_state::save_row is
|
|
* still unset set it. This means that the first time a previous-row filter
|
|
* is seen row-saving gets turned on.
|
|
*/
|
|
if (ps->save_row == SAVE_ROW_UNSET && (mask & PREVIOUS_ROW_FILTERS) != 0U)
|
|
ps->save_row = SAVE_ROW_DEFAULT;
|
|
|
|
if ((no_previous_row /* row not stored */ && !start_of_pass) ||
|
|
ps->save_row == SAVE_ROW_OFF /* disabled by app */ ||
|
|
ps->write_row_size == 0U /* row too large to buffer */)
|
|
mask &= PNG_BIC_MASK(PREVIOUS_ROW_FILTERS);
|
|
|
|
/* On the first row of a pass Paeth is equivalent to sub and up is equivalent
|
|
* to none, so try to simplify the mask in in this case.
|
|
*/
|
|
else if (start_of_pass) {
|
|
# define MATCH(flags) ((mask & (flags)) == (flags))
|
|
if (MATCH(PNG_FILTER_NONE|PNG_FILTER_UP))
|
|
mask &= PNG_BIC_MASK(PNG_FILTER_UP);
|
|
|
|
if (MATCH(PNG_FILTER_SUB|PNG_FILTER_PAETH))
|
|
mask &= PNG_BIC_MASK(PNG_FILTER_PAETH);
|
|
# undef MATCH
|
|
}
|
|
|
|
# ifdef PNG_SELECT_FILTER_SUPPORTED
|
|
if ((mask & (mask-1U)) == 0U /* single bit set */ ||
|
|
ps->write_row_size == 0U /* row cannot be buffered */)
|
|
# endif /* SELECT_FILTER */
|
|
/* Convert the lowest set bit into the corresponding value. If no bits
|
|
* are set select NONE. After this switch statement the value of
|
|
* ps->filters is guaranteed to just be a single filter.
|
|
*/
|
|
switch (mask & -mask)
|
|
{
|
|
default: mask = PNG_FILTER_VALUE_NONE; break;
|
|
case PNG_FILTER_SUB: mask = PNG_FILTER_VALUE_SUB; break;
|
|
case PNG_FILTER_UP: mask = PNG_FILTER_VALUE_UP; break;
|
|
case PNG_FILTER_AVG: mask = PNG_FILTER_VALUE_AVG; break;
|
|
case PNG_FILTER_PAETH: mask = PNG_FILTER_VALUE_PAETH; break;
|
|
}
|
|
|
|
return ps->filters = PNG_BYTE(mask);
|
|
}
|
|
|
|
static png_bytep
|
|
allocate_row(png_structrp png_ptr, png_const_bytep data, png_alloc_size_t size)
|
|
/* Utility to allocate and save some row bytes. If the result is NULL the
|
|
* allocation failed and the png_zlib_struct will have been updated to
|
|
* prevent further allocation attempts.
|
|
*/
|
|
{
|
|
const png_zlib_statep ps = png_ptr->zlib_state;
|
|
png_bytep buffer;
|
|
|
|
debug(ps->write_row_size > 0U);
|
|
|
|
/* OOM is handled silently, as is the case where the row is too large to
|
|
* buffer.
|
|
*/
|
|
buffer = png_voidcast(png_bytep,
|
|
png_malloc_base(png_ptr, ps->write_row_size));
|
|
|
|
/* Setting write_row_size to 0 switches on the code for handling a row that
|
|
* is too large to buffer. This will kick in next time round, i.e. on the
|
|
* next row.
|
|
*/
|
|
if (buffer == NULL)
|
|
ps->write_row_size = 0U;
|
|
|
|
else
|
|
memcpy(buffer, data, size);
|
|
|
|
return buffer;
|
|
}
|
|
#endif /* WRITE_FILTER */
|
|
|
|
#ifdef PNG_SELECT_FILTER_SUPPORTED
|
|
/* Bit set operations. Not in ANSI C-90 but commonly available in highly
|
|
* optimized versions, hence the ifndef. These operations just work on bitsets
|
|
* of size 256. The second argument (the code index) may be evaluated multiple
|
|
* times.
|
|
*/
|
|
#ifndef PNG_CODE_SET /* Can be set in pngpriv.h */
|
|
typedef png_uint_32 png_codeset[8];
|
|
# define PNG_CODE_MASK(i) (((png_uint_32)1U) << ((i) & 0x1FU))
|
|
# define PNG_CODE_IS_SET(c,i) (((c)[(i) >> 5] & PNG_CODE_MASK(i)))
|
|
# define PNG_CODE_SET(c,i) (((c)[(i) >> 5] |= PNG_CODE_MASK(i)))
|
|
# define PNG_CODE_CLEAR(c,i) (((c)[(i) >> 5] &= ~PNG_CODE_MASK(i)))
|
|
#endif /* !PNG_CODE_SET */
|
|
|
|
typedef struct filter_selector
|
|
{
|
|
/* Persistent filter selection information (stored across row boundaries).
|
|
* A code is not considered if it last occured more than 'window' bytes ago.
|
|
* The deflate algorithm means that 'window' cannot exceed 8453377, however
|
|
* practical versions may be far less. When 'distance' reaches 'window' any
|
|
* code where:
|
|
*
|
|
* distance - code_distance[code] > window
|
|
*
|
|
* at the end of a row 'code' is removed from codeset. Otherwise
|
|
* (rearranging the above):
|
|
*
|
|
* distance - window <= code_distance[code]
|
|
*
|
|
* and so the distances of the still active codes can be reduced:
|
|
*
|
|
* code_distance[code] -= distance-window
|
|
* distance = window
|
|
*
|
|
* This prevents any wrap of 'distance' on a row which is shorter than
|
|
* 2^32-window.
|
|
*
|
|
* However when then row is 2^32-window or more bytes long (the row can be up
|
|
* to just under 2^34 bytes long) this algorithm doesn't work; 'distance'
|
|
* will overflow in the middle of the row and all codes are relevant. This
|
|
* is handled below simply by reseting the set of present codes at the start
|
|
* of the row and ignoring the overflow.
|
|
*/
|
|
unsigned int code_count; /* Number of distinct codes seen */
|
|
int png_level; /* Cached compression level */
|
|
png_uint_32 filter_select_max_width;
|
|
/* The maximum number of pixels which can be fitted in the window without
|
|
* filling the entire window (i.e. the maximum number that can be fitted
|
|
* in (window-1) bytes).
|
|
*/
|
|
png_uint_32 sum_bias[PNG_FILTER_VALUE_LAST];
|
|
/* For each filter a measure of its cost in the filter sum calculation.
|
|
* This allows filter selection based on the sum-of-absolute-dfferences
|
|
* method to be biased to favour particular filters. There was no such
|
|
* bias before 1.7 and the filter byte was ignored.
|
|
*/
|
|
png_uint_32 distance; /* Distance from beginning */
|
|
png_codeset codeset; /* Set of seen codes */
|
|
png_uint_32 code_distance[256]; /* Distance at last occurence */
|
|
} filter_selector;
|
|
|
|
static const filter_selector *
|
|
png_start_filter_select(png_zlib_statep ps, unsigned int bpp)
|
|
{
|
|
# define png_ptr ps_png_ptr(ps)
|
|
filter_selector *fs = ps->selector;
|
|
|
|
if (fs == NULL)
|
|
{
|
|
fs = png_voidcast(filter_selector*, png_malloc_base(png_ptr, sizeof *fs));
|
|
|
|
if (fs != NULL)
|
|
{
|
|
png_uint_32 window = ps->filter_select_window;
|
|
fs->png_level = pz_get(ps, IDAT, png_level,
|
|
PNG_DEFAULT_COMPRESSION_LEVEL);
|
|
|
|
/* Delay initialize this here: */
|
|
if (window < 3U || window > PNG_FILTER_SELECT_WINDOW_MAX)
|
|
ps->filter_select_window = window = PNG_FILTER_SELECT_WINDOW_MAX;
|
|
|
|
fs->code_count = 0;
|
|
|
|
switch (fs->png_level)
|
|
{
|
|
default:
|
|
/* TODO: investigate other settings */
|
|
{
|
|
unsigned int f;
|
|
|
|
for (f=0; f<PNG_FILTER_VALUE_LAST; ++f)
|
|
fs->sum_bias[f] = f;
|
|
}
|
|
ps->filter_select_threshold = 64U; /* 6bit RGB */
|
|
ps->filter_select_threshold2 = 50U; /* TODO: experiment! */
|
|
break;
|
|
|
|
case PNG_COMPRESSION_COMPAT: /* Legacy */
|
|
memset(fs->sum_bias, 0U, sizeof fs->sum_bias);
|
|
ps->filter_select_threshold = 1U; /* disabled */
|
|
ps->filter_select_threshold2 = 1U;
|
|
break;
|
|
}
|
|
|
|
/* This is the maximum row width, in pixels, of a row which fits and
|
|
* leaves 1 byte free in the window. For any bigger row filter
|
|
* selection ignores the previous rows.
|
|
*/
|
|
fs->filter_select_max_width = ((window-2U/*filter+last byte*/)*8U)/bpp;
|
|
fs->distance = 0U;
|
|
memset(fs->codeset, 0U, sizeof fs->codeset);
|
|
/* fs->code_distance is left uninitialized because fs->codeset says
|
|
* whether or not each entry has been initialized.
|
|
*/
|
|
ps->selector = fs;
|
|
}
|
|
|
|
else
|
|
ps->write_row_size = 0U; /* OOM */
|
|
}
|
|
# undef png_ptr
|
|
|
|
return fs;
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
/* Per-filter data. This remains separate from the above until the filter
|
|
* selection has been made. It reflects the above however the codeset only
|
|
* records codes present in this row.
|
|
*
|
|
* The 'sum' fields are the sum of the absolute deviation of each code from
|
|
* 0, the algorithm from 1.6 and earlier. In other words:
|
|
*
|
|
* if (code >= 128)
|
|
* sum += code;
|
|
* else
|
|
* sum += 256-code;
|
|
*/
|
|
unsigned int code_count; /* Number of distinct codes seen in row */
|
|
unsigned int new_code_count; /* Number of new codes seen in row */
|
|
png_uint_32 sum_low; /* Low 31 bits of code sum */
|
|
png_uint_32 sum_high; /* High 32 bits of code sum */
|
|
png_codeset codeset; /* Set of codes seen in this row */
|
|
png_uint_32 code_distance[256]; /* Distance at last occurence in this row */
|
|
} filter_data;
|
|
|
|
static void
|
|
filter_data_init(filter_data *fd, png_uint_32 distance, unsigned int filter,
|
|
unsigned int code_is_set, png_uint_32 bias)
|
|
{
|
|
fd->code_count = 1U;
|
|
fd->new_code_count = !code_is_set;
|
|
fd->sum_low = bias;
|
|
fd->sum_high = 0U;
|
|
memset(&fd->codeset, 0U, sizeof fd->codeset);
|
|
PNG_CODE_SET(fd->codeset, filter);
|
|
fd->code_distance[filter] = distance;
|
|
}
|
|
|
|
static void
|
|
add_code(const filter_selector *fs, filter_data *fd, png_uint_32 distance,
|
|
unsigned int code)
|
|
{
|
|
if (!PNG_CODE_IS_SET(fd->codeset, code))
|
|
{
|
|
PNG_CODE_SET(fd->codeset, code);
|
|
++(fd->code_count);
|
|
fd->code_distance[code] = distance;
|
|
if (!PNG_CODE_IS_SET(fs->codeset, code))
|
|
++(fd->new_code_count);
|
|
}
|
|
|
|
{
|
|
png_uint_32 low = fd->sum_low;
|
|
|
|
if (code <= 128U)
|
|
low += code;
|
|
|
|
else
|
|
low += 256U-code;
|
|
|
|
/* Handle overflow into the top bit: */
|
|
if (low & 0x80000000U)
|
|
fd->sum_low = low & 0x7FFFFFFFU, ++fd->sum_high;
|
|
|
|
else
|
|
fd->sum_low = low;
|
|
}
|
|
}
|
|
|
|
static png_byte
|
|
filter_data_select(png_zlib_statep ps, filter_data fd[PNG_FILTER_VALUE_LAST],
|
|
unsigned int filter, png_uint_32 distance, png_uint_32 w)
|
|
{
|
|
# define png_ptr ps_png_ptr(ps)
|
|
/* Choose how to do this depending on the row and window size. */
|
|
filter_selector *fs = ps->selector;
|
|
png_uint_32 window = ps->filter_select_window;
|
|
|
|
affirm(fs != NULL);
|
|
|
|
/* Check the width against the maximum number of pixels that can fit in a
|
|
* window without filling it:
|
|
*/
|
|
if (w > fs->filter_select_max_width)
|
|
{
|
|
/* The cache is not used */
|
|
fs->distance = 0U; /* for next row */
|
|
fs->code_count = 0U;
|
|
memset(fs->codeset, 0U, sizeof fs->codeset);
|
|
}
|
|
|
|
else
|
|
{
|
|
/* Merge the two code sets, discounting codes that last occurred before
|
|
* the start of the window.
|
|
*/
|
|
png_uint_32 adjust, code_count;
|
|
unsigned int code;
|
|
|
|
/* filter_selector::distance is the distance of the first byte in the row
|
|
* (the filter byte), but 'distance' can wrap on long rows. The above
|
|
* test is meant to exclude the wrap case by excluding any case where the
|
|
* row has as many bytes as the window, so:
|
|
*/
|
|
affirm(distance > fs->distance && distance - fs->distance < window);
|
|
|
|
/* Set 'adjust' to the current distance of the start of the window. I.e:
|
|
*
|
|
* +---------------+--------+
|
|
* | before window | window | future data
|
|
* +---------------+--------+
|
|
* A A
|
|
* | |
|
|
* adjust + + distance
|
|
*
|
|
* If the window isn't full yet 'adjust' will be zero, otherwise all the
|
|
* distances will be reduced by 'adjust' so that the first byte of the
|
|
* window has distance 0.
|
|
*/
|
|
if (distance > window)
|
|
adjust = distance-window;
|
|
|
|
else
|
|
adjust = 0;
|
|
|
|
|
|
/* This may be decreased below if some old codes only occured before the
|
|
* start of the window.
|
|
*/
|
|
code_count = fs->code_count + fd->new_code_count;
|
|
|
|
for (code=0U; code<256U; ++code)
|
|
{
|
|
if (PNG_CODE_IS_SET(fd[filter].codeset, code))
|
|
{
|
|
PNG_CODE_SET(fs->codeset, code);
|
|
debug(fd[filter].code_distance[code] >= adjust);
|
|
fs->code_distance[code] = fd[filter].code_distance[code] - adjust;
|
|
}
|
|
|
|
else if (PNG_CODE_IS_SET(fs->codeset, code) && adjust > 0)
|
|
{
|
|
/* The code did not occur in this row, the old distance may now be
|
|
* outside the window (because adjust is non-zero).
|
|
*/
|
|
const png_uint_32 d = fs->code_distance[code];
|
|
|
|
if (d >= adjust)
|
|
fs->code_distance[code] = d-adjust;
|
|
|
|
else
|
|
PNG_CODE_CLEAR(fs->codeset, code), --code_count;
|
|
}
|
|
}
|
|
|
|
fs->code_count = code_count;
|
|
fs->distance = distance - adjust; /* I.e. either distance or window! */
|
|
}
|
|
|
|
return ps->filters = PNG_BYTE(filter);
|
|
# undef png_ptr
|
|
}
|
|
|
|
static png_byte
|
|
select_filter(png_zlib_statep ps, png_const_bytep row,
|
|
png_const_bytep prev, unsigned int bpp, png_uint_32 width, int start_of_pass)
|
|
/* Select a filter from the list provided by png_write_start_row. */
|
|
{
|
|
png_byte filters = png_write_start_row(ps, start_of_pass, prev == NULL);
|
|
|
|
# define png_ptr ps_png_ptr(ps)
|
|
if (filters >= PNG_FILTER_NONE) /* multiple filters to test */
|
|
{
|
|
const png_uint_32 max_pixels = ps->row_buffer_max_pixels;
|
|
const png_uint_32 block_pixels = ps->row_buffer_max_aligned_pixels;
|
|
const filter_selector *fs = ps->selector;
|
|
png_uint_32 pixels_to_go = width;
|
|
png_uint_32 distance;
|
|
unsigned int bits_at_end = 0U;
|
|
png_byte prev_pixels[4*2*2]; /* 2 pixels up to 4x2-bytes each */
|
|
filter_data fd[PNG_FILTER_VALUE_LAST];
|
|
|
|
debug((filters & (filters-1)) != 0U); /* Expect more than one bit! */
|
|
|
|
if (fs == NULL)
|
|
{
|
|
/* Delay initialize with a quiet OOM handler */
|
|
fs = png_start_filter_select(ps, bpp);
|
|
if (fs == NULL)
|
|
{
|
|
ps->filters = PNG_FILTER_VALUE_NONE;
|
|
return PNG_FILTER_VALUE_NONE;
|
|
}
|
|
}
|
|
|
|
/* If PNG_FILTER_NONE is in the list check it first. */
|
|
if (filters & PNG_FILTER_NONE)
|
|
{
|
|
png_const_bytep rp = row;
|
|
png_uint_32 w = width;
|
|
|
|
distance = fs->distance;
|
|
filter_data_init(fd+PNG_FILTER_VALUE_NONE, distance++,
|
|
PNG_FILTER_VALUE_NONE,
|
|
PNG_CODE_IS_SET(fs->codeset, PNG_FILTER_VALUE_NONE),
|
|
fs->sum_bias[PNG_FILTER_VALUE_NONE]);
|
|
|
|
if (bpp >= 8) /* complete bytes */
|
|
{
|
|
const unsigned int bytes = bpp/8U;
|
|
|
|
while (w > 0)
|
|
{
|
|
unsigned int b;
|
|
for (b=0; b<bytes; ++b)
|
|
add_code(fs, fd+PNG_FILTER_VALUE_NONE, distance++, *rp++);
|
|
--w;
|
|
}
|
|
}
|
|
|
|
else /* multiple pixels per byte */
|
|
{
|
|
const unsigned int ppb = 8U/bpp;
|
|
|
|
debug(ppb * bpp == 8U); /* Expect bpp to be a power of 2 */
|
|
|
|
while (w >= ppb)
|
|
{
|
|
add_code(fs, fd+PNG_FILTER_VALUE_NONE, distance++, *rp++);
|
|
w -= ppb;
|
|
}
|
|
|
|
if (w > 0) /* partial byte at end */
|
|
add_code(fs, fd+PNG_FILTER_VALUE_NONE, distance++,
|
|
*rp & (0xFFU >> (w*bpp) /* zero unused bits */));
|
|
}
|
|
|
|
/* For PNG data with a small number of codes it is worth skipping the
|
|
* filtering because it almost always increases the code count
|
|
* significantly. This is controlled by
|
|
* png_zlib_state::filter_select_threshold and causes an early return
|
|
* here.
|
|
*/
|
|
if (fd[PNG_FILTER_VALUE_NONE].new_code_count +
|
|
fs->code_count < ps->filter_select_threshold)
|
|
return filter_data_select(ps, fd, PNG_FILTER_VALUE_NONE, distance,
|
|
width);
|
|
} /* PNG_FILTER_NONE */
|
|
|
|
memset(prev_pixels, 0U, sizeof prev_pixels);
|
|
distance = fs->distance;
|
|
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i=PNG_FILTER_VALUE_NONE+1U; i<PNG_FILTER_VALUE_LAST; ++i)
|
|
if (PNG_FILTER_MASK(i) & filters)
|
|
filter_data_init(fd+i, distance, i,
|
|
PNG_CODE_IS_SET(fs->codeset, i), fs->sum_bias[i]);
|
|
}
|
|
|
|
++distance;
|
|
|
|
while (pixels_to_go || bits_at_end)
|
|
{
|
|
unsigned int bits, i;
|
|
union
|
|
{
|
|
PNG_ROW_BUFFER_ALIGN_TYPE force_buffer_alignment;
|
|
png_byte row[4][PNG_ROW_BUFFER_SIZE];
|
|
} filtered;
|
|
union
|
|
{
|
|
PNG_ROW_BUFFER_ALIGN_TYPE force_buffer_alignment;
|
|
png_byte byte;
|
|
} last;
|
|
|
|
if (pixels_to_go)
|
|
{
|
|
if (pixels_to_go > max_pixels)
|
|
{
|
|
/* Maintain alignment by consuming on block_pixels at once */
|
|
bits = block_pixels * bpp;
|
|
pixels_to_go -= block_pixels; /* May be 0 */
|
|
}
|
|
|
|
else
|
|
{
|
|
bits = pixels_to_go * bpp;
|
|
bits_at_end = bits & 0x7U;
|
|
bits -= bits_at_end;
|
|
pixels_to_go = 0U; /* +bits_at_end */
|
|
}
|
|
}
|
|
|
|
else /* incomplete byte at the end of the pixel */
|
|
{
|
|
/* Make sure the unused bits are cleared (to zero, although this is
|
|
* an arbitrary choice):
|
|
*/
|
|
last.byte = PNG_BYTE(*row & ~(0xFFU >> bits_at_end));
|
|
row = &last.byte;
|
|
bits = bits_at_end;
|
|
bits_at_end = 0U;
|
|
}
|
|
|
|
filter_block(prev, prev_pixels, row, bits, bpp,
|
|
filtered.row[0/*sub*/], filtered.row[1/*up*/],
|
|
filtered.row[2/*avg*/], filtered.row[3/*Paeth*/]);
|
|
|
|
/* A block of (bits+7)/8 bytes is now available to process. */
|
|
for (i=0; 8U*i < bits; ++i, ++distance)
|
|
{
|
|
unsigned int f;
|
|
|
|
for (f=PNG_FILTER_VALUE_NONE+1U; f<PNG_FILTER_VALUE_LAST; ++f)
|
|
if (PNG_FILTER_MASK(f) & filters)
|
|
add_code(fs, fd+f, distance, filtered.row[f-1U][i]);
|
|
}
|
|
|
|
if (prev != NULL)
|
|
prev += bits >> 3;
|
|
|
|
row += bits >> 3;
|
|
}
|
|
|
|
/* Now look at the candidate filters, including 'none' and select the
|
|
* best. We know that 'none' increases the code count beyond the
|
|
* threshold, so if the old code count is below the threshold and there is
|
|
* a filter which does not increase the code count select it; doing so
|
|
* should do no harm to the overall compression.
|
|
*/
|
|
if (fs->code_count < ps->filter_select_threshold)
|
|
{
|
|
unsigned int f, min_new_count = 257U, min_f = PNG_FILTER_VALUE_NONE;
|
|
|
|
for (f=PNG_FILTER_VALUE_NONE+1U; f<PNG_FILTER_VALUE_LAST; ++f)
|
|
if ((PNG_FILTER_MASK(f) & filters) != 0)
|
|
{
|
|
unsigned int new_code_count = fd[f].new_code_count;
|
|
|
|
if (new_code_count == 0U)
|
|
return filter_data_select(ps, fd, f, distance, width);
|
|
|
|
else if (new_code_count < min_new_count)
|
|
min_new_count = new_code_count, min_f = f;
|
|
}
|
|
|
|
/* Use the second threshold to decide whether to select the best filter
|
|
* on this basis alone:
|
|
*/
|
|
if (min_f != PNG_FILTER_VALUE_NONE &&
|
|
fs->code_count + min_new_count < ps->filter_select_threshold2)
|
|
return filter_data_select(ps, fd, min_f, distance, width);
|
|
}
|
|
|
|
/* Now fall back to the libpng 1.6 and earlier algorithm. This favours
|
|
* the filter which produces least deviation in the codes from 0. When
|
|
* this works it does so by reducing the distribution of code values. The
|
|
* filters implicitly encode the difference between a predictor based on
|
|
* adjacent values, the assumption is that this will result in values
|
|
* close to 0.
|
|
*/
|
|
{
|
|
png_uint_32 high = -1;
|
|
png_uint_32 low = -1;
|
|
unsigned int min_f = 0 /*unset, but safe*/;
|
|
unsigned int f;
|
|
|
|
for (f=PNG_FILTER_VALUE_NONE; f<PNG_FILTER_VALUE_LAST; ++f)
|
|
if ((PNG_FILTER_MASK(f) & filters) != 0 &&
|
|
(fd[f].sum_high < high ||
|
|
(fd[f].sum_high == high && fd[f].sum_low < low)))
|
|
{
|
|
high = fd[f].sum_high;
|
|
low = fd[f].sum_low;
|
|
|
|
if (low & 0x80000000U)
|
|
{
|
|
low &= 0x7FFFFFFFU, --high;
|
|
if (high & 0x80000000U)
|
|
low = high = 0U;
|
|
}
|
|
|
|
min_f = f;
|
|
}
|
|
|
|
return filter_data_select(ps, fd, min_f, distance, width);
|
|
}
|
|
}
|
|
|
|
debug(filters < PNG_FILTER_VALUE_LAST);
|
|
return ps->filters = filters;
|
|
# undef png_ptr
|
|
}
|
|
#else /* !SELECT_FILTER */
|
|
/* Filter selection not being done, just call png_write_start_row: */
|
|
# define select_filter(ps, rp, pp, bpp, width, start_of_pass)\
|
|
png_write_start_row((ps), (start_of_pass), (pp) == NULL)
|
|
#endif /* !SELECT_FILTER */
|
|
|
|
/* This is the common function to write multiple rows of PNG data. The data is
|
|
* in the relevant PNG format but has had no filtering done.
|
|
*/
|
|
void /* PRIVATE */
|
|
png_write_png_rows(png_structrp png_ptr, png_const_bytep *rows,
|
|
png_uint_32 num_rows)
|
|
{
|
|
const png_zlib_statep ps = png_ptr->zlib_state;
|
|
const unsigned int bpp = png_ptr->row_output_pixel_depth;
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
png_const_bytep previous_row = ps->previous_write_row;
|
|
# else /* !WRITE_FILTER */
|
|
/* These are constant in the no-filer case: */
|
|
const png_byte filter = PNG_FILTER_VALUE_NONE;
|
|
const png_uint_32 max_pixels = ps->zlib_max_pixels;
|
|
const png_uint_32 block_pixels = ps->zlib_max_aligned_pixels;
|
|
# endif /* !WRITE_FILTER */
|
|
/* Write the given rows handling the png_compress_IDAT argument limitations
|
|
* (uInt) and any valid row width.
|
|
*/
|
|
png_uint_32 last_row_in_pass = 0U; /* Actual last, not last+1! */
|
|
png_uint_32 pixels_in_pass = 0U;
|
|
unsigned int first_row_in_pass = 0U; /* For do_interlace */
|
|
unsigned int pixels_at_end = 0U; /* for a partial byte at the end */
|
|
unsigned int base_info_flags = png_row_end;
|
|
int pass = -1; /* Invalid: force calculation first time round */
|
|
|
|
debug(png_ptr->row_output_pixel_depth == PNG_PIXEL_DEPTH(*png_ptr));
|
|
|
|
while (num_rows-- > 0U)
|
|
{
|
|
if (png_ptr->pass != pass)
|
|
{
|
|
/* Recalcuate the row bytes and partial bits */
|
|
pass = png_ptr->pass;
|
|
pixels_in_pass = png_ptr->width;
|
|
|
|
if (png_ptr->interlaced == PNG_INTERLACE_NONE)
|
|
{
|
|
debug(pass == 0);
|
|
last_row_in_pass = png_ptr->height - 1U;
|
|
base_info_flags |= png_pass_last; /* there is only one */
|
|
}
|
|
|
|
else
|
|
{
|
|
const png_uint_32 height = png_ptr->height;
|
|
|
|
last_row_in_pass = PNG_PASS_ROWS(height, pass);
|
|
debug(pass >= 0 && pass < 7);
|
|
|
|
# ifdef PNG_WRITE_INTERLACING_SUPPORTED
|
|
if (png_ptr->do_interlace)
|
|
{
|
|
/* libpng is doing the interlace handling, the row number is
|
|
* actually the row in the image.
|
|
*
|
|
* This overflows when the PNG height is such that the are no
|
|
* rows in this pass. This does not matter; because there are
|
|
* no rows the value doesn't get used.
|
|
*/
|
|
last_row_in_pass =
|
|
PNG_ROW_FROM_PASS_ROW(last_row_in_pass-1U, pass);
|
|
first_row_in_pass = PNG_PASS_START_ROW(pass);
|
|
}
|
|
|
|
else /* Application handles the interlace */
|
|
# endif /* WRITE_INTERLACING */
|
|
{
|
|
/* The row does exist, so this works without checking the column
|
|
* count.
|
|
*/
|
|
debug(last_row_in_pass > 0U);
|
|
last_row_in_pass -= 1U;
|
|
}
|
|
|
|
if (pass == PNG_LAST_PASS(pixels_in_pass/*PNG width*/, height))
|
|
base_info_flags |= png_pass_last;
|
|
|
|
/* Finally, adjust pixels_in_pass for the interlacing (skip the
|
|
* final pass; it is full width).
|
|
*/
|
|
if (pass < 6)
|
|
pixels_in_pass = PNG_PASS_COLS(pixels_in_pass, pass);
|
|
}
|
|
|
|
/* Mask out the bits in a partial byte. */
|
|
pixels_at_end = pixels_in_pass & PNG_ADDOF(bpp);
|
|
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
/* Reset the previous_row pointer correctly; NULL at the start of
|
|
* the pass. If row_number is not 0 then a previous write_rows was
|
|
* interrupted in mid-pass and any required buffer should be in
|
|
* previous_write_row (set in the initializer).
|
|
*/
|
|
if (png_ptr->row_number == first_row_in_pass)
|
|
previous_row = NULL;
|
|
# endif /* WRITE_FILTER */
|
|
}
|
|
|
|
# ifdef PNG_WRITE_INTERLACING_SUPPORTED
|
|
/* When libpng is handling the interlace we see rows that must be
|
|
* skipped.
|
|
*/
|
|
if (!png_ptr->do_interlace ||
|
|
PNG_ROW_IN_INTERLACE_PASS(png_ptr->row_number, pass))
|
|
# endif /* WRITE_INTERLACING */
|
|
{
|
|
const unsigned int row_info_flags = base_info_flags |
|
|
(png_ptr->row_number ==
|
|
first_row_in_pass ? png_pass_first_row : 0) |
|
|
(png_ptr->row_number == last_row_in_pass ? png_pass_last_row : 0);
|
|
const int flush = row_flush(ps, row_info_flags);
|
|
png_const_bytep row = *rows;
|
|
png_uint_32 pixels_to_go = pixels_in_pass;
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
/* The filter can change each time round. Call png_write_start_row
|
|
* to resolve any changes. Note that when this function is used to
|
|
* do filter selection from png_write_png_data on the first row
|
|
* png_write_start_row will get called twice.
|
|
*/
|
|
const png_byte filter = select_filter(ps, row, previous_row, bpp,
|
|
pixels_in_pass, png_ptr->row_number == first_row_in_pass);
|
|
const png_uint_32 max_pixels = filter == PNG_FILTER_VALUE_NONE ?
|
|
ps->zlib_max_pixels : ps->row_buffer_max_pixels;
|
|
const png_uint_32 block_pixels = filter == PNG_FILTER_VALUE_NONE ?
|
|
ps->zlib_max_aligned_pixels : ps->row_buffer_max_aligned_pixels;
|
|
|
|
/* The row handling uses png_compress_IDAT directly if there is no
|
|
* filter to be applied, otherwise it uses filter_row.
|
|
*/
|
|
if (filter != PNG_FILTER_VALUE_NONE)
|
|
{
|
|
int start_of_row = 1;
|
|
png_byte prev_pixels[4*2*2]; /* 2 pixels up to 4x2-bytes each */
|
|
|
|
memset(prev_pixels, 0U, sizeof prev_pixels);
|
|
|
|
while (pixels_to_go > max_pixels)
|
|
{
|
|
/* Write a block at once to maintain alignment */
|
|
filter_row(png_ptr, previous_row, prev_pixels, row,
|
|
bpp * block_pixels, bpp, filter, start_of_row,
|
|
Z_NO_FLUSH);
|
|
|
|
if (previous_row != NULL)
|
|
previous_row += (block_pixels * bpp) >> 3;
|
|
|
|
row += (block_pixels * bpp) >> 3;
|
|
pixels_to_go -= block_pixels;
|
|
start_of_row = 0;
|
|
}
|
|
|
|
/* The filter code handles the partial byte at the end correctly,
|
|
* so this is all that is required:
|
|
*/
|
|
if (pixels_to_go > 0)
|
|
filter_row(png_ptr, previous_row, prev_pixels, row,
|
|
bpp * pixels_to_go, bpp, filter, start_of_row, flush);
|
|
}
|
|
|
|
else
|
|
# endif /* WRITE_FILTER */
|
|
|
|
{
|
|
/* The no-filter case. */
|
|
const uInt block_bytes = (uInt)/*SAFE*/(
|
|
bpp <= 8U ?
|
|
block_pixels >> PNG_SHIFTOF(bpp) :
|
|
block_pixels * (bpp >> 3));
|
|
|
|
/* png_write_start_IDAT guarantees this, but double check for
|
|
* overflow above in debug:
|
|
*/
|
|
debug((block_bytes & (PNG_ROW_BUFFER_BYTE_ALIGN-1U)) == 0U);
|
|
|
|
/* The filter has to be written here: */
|
|
png_compress_IDAT(png_ptr, &filter, 1U/*len*/, Z_NO_FLUSH);
|
|
|
|
/* Process blocks of pixels up to the limit. */
|
|
while (pixels_to_go > max_pixels)
|
|
{
|
|
png_compress_IDAT(png_ptr, row, block_bytes, Z_NO_FLUSH);
|
|
row += block_bytes;
|
|
pixels_to_go -= block_pixels;
|
|
}
|
|
|
|
/* Now compress the remainder; pixels_to_go <= max_pixels so it will
|
|
* fit in a uInt.
|
|
*/
|
|
{
|
|
const png_uint_32 remainder =
|
|
bpp <= 8U
|
|
? (pixels_to_go-pixels_at_end) >> PNG_SHIFTOF(bpp)
|
|
: (pixels_to_go-pixels_at_end) * (bpp >> 3);
|
|
|
|
if (remainder > 0U)
|
|
png_compress_IDAT(png_ptr, row, remainder,
|
|
pixels_at_end > 0U ? Z_NO_FLUSH : flush);
|
|
|
|
else
|
|
debug(pixels_at_end > 0U);
|
|
|
|
if (pixels_at_end > 0U)
|
|
{
|
|
/* There is a final partial byte. This is PNG format so the
|
|
* left-most bits are the most significant.
|
|
*/
|
|
const png_byte last = PNG_BYTE(row[remainder] &
|
|
~(0xFFU >> (pixels_at_end * bpp)));
|
|
|
|
png_compress_IDAT(png_ptr, &last, 1U, flush);
|
|
}
|
|
}
|
|
}
|
|
|
|
png_write_end_row(png_ptr, flush);
|
|
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
previous_row = *rows;
|
|
# endif /* WRITE_FILTER */
|
|
# undef HANDLE
|
|
} /* row in pass */
|
|
|
|
# ifdef PNG_WRITE_INTERLACING_SUPPORTED
|
|
else /* row not in pass; just skip it */
|
|
{
|
|
if (++png_ptr->row_number >= png_ptr->height)
|
|
{
|
|
debug(png_ptr->row_number == png_ptr->height);
|
|
|
|
png_ptr->row_number = 0U;
|
|
png_ptr->pass = 0x7U & (pass+1U);
|
|
}
|
|
}
|
|
# endif /* WRITE_INTERLACING */
|
|
|
|
++rows;
|
|
} /* while num_rows */
|
|
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
/* previous_row must be copied back unless we don't need it because the
|
|
* next row is the first one in the pass (this relies on png_write_end_row
|
|
* setting row_number to 0 at the end!)
|
|
*/
|
|
if (png_ptr->row_number != 0U && previous_row != NULL && SAVE_ROW(ps) &&
|
|
ps->previous_write_row != previous_row/*all rows skipped*/)
|
|
{
|
|
# ifdef PNG_SELECT_FILTER_SUPPORTED
|
|
/* We might be able to avoid any copy. */
|
|
if (ps->current_write_row == previous_row)
|
|
{
|
|
png_bytep old = ps->previous_write_row;
|
|
ps->previous_write_row = ps->current_write_row;
|
|
ps->current_write_row = old; /* may be NULL */
|
|
}
|
|
|
|
else
|
|
# endif /* SELECT_FILTER */
|
|
|
|
if (ps->previous_write_row != NULL)
|
|
memcpy(ps->previous_write_row, previous_row,
|
|
png_calc_rowbytes(png_ptr, bpp, pixels_in_pass));
|
|
|
|
else
|
|
ps->previous_write_row = allocate_row(png_ptr, previous_row,
|
|
png_calc_rowbytes(png_ptr, bpp, pixels_in_pass));
|
|
}
|
|
# endif /* WRITE_FILTER */
|
|
}
|
|
|
|
#ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
/* This filters the row, chooses which filter to use, if it has not already
|
|
* been specified by the application, and then writes the row out with the
|
|
* chosen filter.
|
|
*/
|
|
static void
|
|
write_png_data(png_structrp png_ptr, png_const_bytep prev_row,
|
|
png_bytep prev_pixels, png_const_bytep unfiltered_row, png_uint_32 x,
|
|
unsigned int row_bits, unsigned int row_info_flags)
|
|
/* This filters the row appropriately and returns an updated prev_row
|
|
* (updated for 'x').
|
|
*/
|
|
{
|
|
const png_zlib_statep ps = png_ptr->zlib_state;
|
|
const unsigned int bpp = png_ptr->row_output_pixel_depth;
|
|
const int flush = row_flush(ps, row_info_flags);
|
|
const png_byte filter = ps->filters; /* just one */
|
|
|
|
/* These invariants are expected from the caller: */
|
|
affirm(row_bits <= 8U*PNG_ROW_BUFFER_SIZE);
|
|
debug(filter < PNG_FILTER_VALUE_LAST/*sic: last+1*/);
|
|
|
|
/* Now choose the correct filter implementation according to the number of
|
|
* filters in the filters_to_try list. The prev_row parameter is made
|
|
* NULL on the first row because it is uninitialized at that point.
|
|
*/
|
|
if (filter == PNG_FILTER_VALUE_NONE)
|
|
write_unfiltered_rowbits(png_ptr, unfiltered_row, row_bits,
|
|
x == 0 ? PNG_FILTER_VALUE_NONE : PNG_FILTER_VALUE_LAST, flush);
|
|
|
|
else
|
|
filter_row(png_ptr,
|
|
(row_info_flags & png_pass_first_row) ? NULL : prev_row,
|
|
prev_pixels, unfiltered_row, row_bits, bpp, filter, x == 0, flush);
|
|
|
|
/* Handle end of row: */
|
|
if ((row_info_flags & png_row_end) != 0)
|
|
png_write_end_row(png_ptr, flush);
|
|
}
|
|
|
|
void /* PRIVATE */
|
|
png_write_png_data(png_structrp png_ptr, png_bytep prev_pixels,
|
|
png_const_bytep unfiltered_row, png_uint_32 x,
|
|
unsigned int width/*pixels*/, unsigned int row_info_flags)
|
|
{
|
|
const png_zlib_statep ps = png_ptr->zlib_state;
|
|
|
|
affirm(ps != NULL);
|
|
|
|
{
|
|
const unsigned int bpp = png_ptr->row_output_pixel_depth;
|
|
const unsigned int row_bits = width * bpp;
|
|
png_bytep prev_row = ps->previous_write_row;
|
|
|
|
debug(bpp <= 64U && width <= 65535U &&
|
|
width < 65535U/bpp); /* Expensive: only matters on 16-bit */
|
|
|
|
/* This is called once before starting a new row here, but below it is
|
|
* only called once between starting a new list of rows.
|
|
*/
|
|
if (x == 0)
|
|
png_write_start_row(ps, (row_info_flags & png_pass_first_row) != 0,
|
|
prev_row == NULL);
|
|
|
|
/* If filter selection is required the filter will have at least one mask
|
|
* bit set.
|
|
*/
|
|
# ifdef PNG_SELECT_FILTER_SUPPORTED
|
|
if (ps->filters >= PNG_FILTER_NONE/*lowest mask bit*/)
|
|
{
|
|
/* If the entire row is passed in the input process it via
|
|
* immediately, otherwise the row must be buffered for later
|
|
* analysis.
|
|
*/
|
|
png_const_bytep row;
|
|
|
|
if (x > 0 || (row_info_flags & png_row_end) == 0)
|
|
{
|
|
/* The row must be saved for later. */
|
|
png_bytep buffer = ps->current_write_row;
|
|
|
|
/* png_write_start row should always check this: */
|
|
debug(ps->write_row_size > 0U);
|
|
|
|
if (buffer != NULL)
|
|
memcpy(buffer + png_calc_rowbytes(png_ptr, bpp, x),
|
|
unfiltered_row, (row_bits + 7U) >> 3);
|
|
|
|
|
|
else if (x == 0U)
|
|
ps->current_write_row = buffer = allocate_row(png_ptr,
|
|
unfiltered_row, (row_bits + 7U) >> 3);
|
|
|
|
row = buffer;
|
|
}
|
|
|
|
else
|
|
row = unfiltered_row;
|
|
|
|
if (row != NULL) /* else out of memory */
|
|
{
|
|
/* At row end, process the save buffer. */
|
|
if ((row_info_flags & png_row_end) != 0)
|
|
png_write_png_rows(png_ptr, &row, 1U);
|
|
|
|
/* Early return to skip the single-filter code */
|
|
return;
|
|
}
|
|
|
|
/* Caching the row failed, so process the row using the lowest set
|
|
* filter. The allocation error should only ever happen at the
|
|
* start of the row. If this goes wrong the output will have been
|
|
* damaged.
|
|
*/
|
|
affirm(x == 0U);
|
|
}
|
|
# endif /* SELECT_FILTER */
|
|
|
|
/* prev_row is either NULL or the position in the previous row buffer */
|
|
if (prev_row != NULL && x > 0)
|
|
prev_row += png_calc_rowbytes(png_ptr, bpp, x);
|
|
|
|
/* This is the single filter case (no selection): */
|
|
write_png_data(png_ptr, prev_row, prev_pixels, unfiltered_row, x,
|
|
row_bits, row_info_flags);
|
|
|
|
/* Copy the current row into the previous row buffer, if available, unless
|
|
* this is the last row in the pass, when there is no point. Note that
|
|
* write_previous_row may have garbage in a partial byte at the end as a
|
|
* result of this memcpy.
|
|
*/
|
|
if (!(row_info_flags & png_pass_last_row) && SAVE_ROW(ps)) {
|
|
if (prev_row != NULL)
|
|
memcpy(prev_row, unfiltered_row, (row_bits + 7U) >> 3);
|
|
|
|
/* NOTE: if the application sets png_zlib_state::save_row in a callback
|
|
* it isn't possible to do the save until the next row. allocate_row
|
|
* handles OOM silently by turning off the save.
|
|
*/
|
|
else if (x == 0) /* can allocate the save buffer */
|
|
ps->previous_write_row =
|
|
allocate_row(png_ptr, unfiltered_row, (row_bits + 7U) >> 3);
|
|
}
|
|
}
|
|
}
|
|
#else /* !WRITE_FILTER */
|
|
void /* PRIVATE */
|
|
png_write_start_IDAT(png_structrp png_ptr)
|
|
{
|
|
png_zlib_statep ps = get_zlib_state(png_ptr);
|
|
|
|
/* Set up the IDAT compression state. Expect the state to have been released
|
|
* by the previous owner, but it doesn't much matter if there was an error.
|
|
* Note that the stream is not claimed yet.
|
|
*/
|
|
debug(png_ptr->zowner == 0U);
|
|
|
|
/* This sets the buffer limits and write_row_size, which is used below. */
|
|
png_zlib_state_set_buffer_limits(png_ptr, ps);
|
|
}
|
|
|
|
void /* PRIVATE */
|
|
png_write_png_data(png_structrp png_ptr, png_bytep prev_pixels,
|
|
png_const_bytep unfiltered_row, png_uint_32 x,
|
|
unsigned int width/*pixels*/, unsigned int row_info_flags)
|
|
{
|
|
const unsigned int bpp = png_ptr->row_output_pixel_depth;
|
|
int flush;
|
|
png_uint_32 row_bits;
|
|
|
|
row_bits = width;
|
|
row_bits *= bpp;
|
|
/* These invariants are expected from the caller: */
|
|
affirm(width < 65536U && bpp <= 64U && width < 65536U/bpp &&
|
|
row_bits <= 8U*PNG_ROW_BUFFER_SIZE);
|
|
|
|
affirm(png_ptr->zlib_state != NULL);
|
|
flush = row_flush(png_ptr->zlib_state, row_info_flags);
|
|
|
|
write_unfiltered_rowbits(png_ptr, unfiltered_row, row_bits,
|
|
x == 0 ? PNG_FILTER_VALUE_NONE : PNG_FILTER_VALUE_LAST, flush);
|
|
|
|
PNG_UNUSED(prev_pixels);
|
|
|
|
/* Handle end of row: */
|
|
if ((row_info_flags & png_row_end) != 0)
|
|
png_write_end_row(png_ptr, flush);
|
|
}
|
|
#endif /* !WRITE_FILTER */
|
|
|
|
png_int_32 /* PRIVATE */
|
|
png_write_setting(png_structrp png_ptr, png_uint_32 setting,
|
|
png_uint_32 parameter, png_int_32 value)
|
|
{
|
|
/* Caller checks the arguments for basic validity */
|
|
int only_get = (setting & PNG_SF_GET) != 0U;
|
|
|
|
setting &= ~PNG_SF_GET;
|
|
|
|
switch (setting)
|
|
{
|
|
/* Settings in png_struct: */
|
|
case PNG_SW_IDAT_size:
|
|
if (parameter > 0 && parameter <= PNG_UINT_31_MAX)
|
|
{
|
|
if (!only_get)
|
|
png_ptr->IDAT_size = parameter;
|
|
|
|
return 0; /* set ok */
|
|
}
|
|
|
|
else
|
|
return PNG_EINVAL;
|
|
|
|
/* Settings in zlib_state: */
|
|
case PNG_SW_COMPRESS_png_level:
|
|
return compression_setting(png_ptr, parameter, png_level, value,
|
|
only_get);
|
|
|
|
# ifdef PNG_WRITE_CUSTOMIZE_COMPRESSION_SUPPORTED
|
|
case PNG_SW_COMPRESS_zlib_level:
|
|
return compression_setting(png_ptr, parameter, level, value,
|
|
only_get);
|
|
|
|
case PNG_SW_COMPRESS_windowBits:
|
|
return compression_setting(png_ptr, parameter, windowBits, value,
|
|
only_get);
|
|
|
|
case PNG_SW_COMPRESS_memLevel:
|
|
return compression_setting(png_ptr, parameter, memLevel, value,
|
|
only_get);
|
|
|
|
case PNG_SW_COMPRESS_strategy:
|
|
return compression_setting(png_ptr, parameter, strategy, value,
|
|
only_get);
|
|
|
|
case PNG_SW_COMPRESS_method:
|
|
if (value != 8) /* Only supported method */
|
|
return PNG_EINVAL;
|
|
return 8; /* old method */
|
|
# endif /* WRITE_CUSTOMIZE_COMPRESSION */
|
|
|
|
# ifdef PNG_WRITE_FILTER_SUPPORTED
|
|
case PNG_SW_COMPRESS_filters:
|
|
/* The method must match that in the IHDR: */
|
|
if (parameter == png_ptr->filter_method)
|
|
{
|
|
if (!only_get)
|
|
return set_filter(get_zlib_state(png_ptr), value);
|
|
|
|
else if (png_ptr->zlib_state != NULL &&
|
|
png_ptr->zlib_state->filter_mask != 0U/*unset*/)
|
|
return png_ptr->zlib_state->filter_mask;
|
|
|
|
else
|
|
return PNG_UNSET;
|
|
}
|
|
|
|
else /* Invalid filter method */
|
|
return PNG_EINVAL;
|
|
|
|
case PNG_SW_COMPRESS_row_buffers:
|
|
/* New in 1.7.0: direct control of the buffering. */
|
|
switch (parameter)
|
|
{
|
|
case 0:
|
|
if (!only_get)
|
|
get_zlib_state(png_ptr)->save_row = SAVE_ROW_OFF;
|
|
return 0;
|
|
|
|
case 1:
|
|
if (!only_get)
|
|
get_zlib_state(png_ptr)->save_row = SAVE_ROW_ON;
|
|
return 1;
|
|
|
|
default:
|
|
return PNG_ENOSYS; /* no support for bigger values */
|
|
}
|
|
# endif /* WRITE_FILTER */
|
|
|
|
# ifdef PNG_WRITE_FLUSH_SUPPORTED
|
|
case PNG_SW_FLUSH:
|
|
/* Set the automatic flush interval or 0 to turn flushing off */
|
|
if (!only_get)
|
|
get_zlib_state(png_ptr)->flush_dist =
|
|
value <= 0 ? 0xEFFFFFFFU : (png_uint_32)/*SAFE*/value;
|
|
|
|
return 0;
|
|
# endif /* WRITE_FLUSH */
|
|
|
|
# ifdef PNG_WRITE_CHECK_FOR_INVALID_INDEX_SUPPORTED
|
|
case PNG_SRW_CHECK_FOR_INVALID_INDEX:
|
|
/* The 'enabled' value is a FORTRAN style three-state: */
|
|
if (value > 0)
|
|
png_ptr->palette_index_check = PNG_PALETTE_CHECK_ON;
|
|
|
|
else if (value < 0)
|
|
png_ptr->palette_index_check = PNG_PALETTE_CHECK_OFF;
|
|
|
|
else
|
|
png_ptr->palette_index_check = PNG_PALETTE_CHECK_DEFAULT;
|
|
|
|
return 0;
|
|
# endif /* WRITE_CHECK_FOR_INVALID_INDEX */
|
|
|
|
# ifdef PNG_BENIGN_WRITE_ERRORS_SUPPORTED
|
|
case PNG_SRW_ERROR_HANDLING:
|
|
/* The parameter is a bit mask of what to set, the value is what to
|
|
* set it to. PNG_IDAT_ERRORS is ignored on write.
|
|
*/
|
|
if (value >= PNG_IGNORE && value <= PNG_ERROR &&
|
|
parameter <= PNG_ALL_ERRORS)
|
|
{
|
|
if ((parameter & PNG_BENIGN_ERRORS) != 0U)
|
|
png_ptr->benign_error_action = value & 0x3U;
|
|
|
|
if ((parameter & PNG_APP_WARNINGS) != 0U)
|
|
png_ptr->app_warning_action = value & 0x3U;
|
|
|
|
if ((parameter & PNG_APP_ERRORS) != 0U)
|
|
png_ptr->app_error_action = value & 0x3U;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return PNG_EINVAL;
|
|
# endif /* BENIGN_WRITE_ERRORS */
|
|
|
|
default:
|
|
return PNG_ENOSYS; /* not supported (whatever it is) */
|
|
}
|
|
}
|
|
#endif /* WRITE */
|