mirror of
				https://git.code.sf.net/p/libpng/code.git
				synced 2025-07-10 18:04:09 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			2203 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2203 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* png.c - location for general purpose libpng functions
 | |
|  *
 | |
|  * Last changed in libpng 1.5.0 [July 30, 2010]
 | |
|  * Copyright (c) 1998-2010 Glenn Randers-Pehrson
 | |
|  * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
 | |
|  * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
 | |
|  *
 | |
|  * This code is released under the libpng license.
 | |
|  * For conditions of distribution and use, see the disclaimer
 | |
|  * and license in png.h
 | |
|  */
 | |
| 
 | |
| #include "pngpriv.h"
 | |
| 
 | |
| /* Generate a compiler error if there is an old png.h in the search path. */
 | |
| typedef version_1_5_0beta37 Your_png_h_is_not_version_1_5_0beta37;
 | |
| 
 | |
| /* Version information for C files.  This had better match the version
 | |
|  * string defined in png.h.
 | |
|  */
 | |
| 
 | |
| /* Tells libpng that we have already handled the first "num_bytes" bytes
 | |
|  * of the PNG file signature.  If the PNG data is embedded into another
 | |
|  * stream we can set num_bytes = 8 so that libpng will not attempt to read
 | |
|  * or write any of the magic bytes before it starts on the IHDR.
 | |
|  */
 | |
| 
 | |
| #ifdef PNG_READ_SUPPORTED
 | |
| void PNGAPI
 | |
| png_set_sig_bytes(png_structp png_ptr, int num_bytes)
 | |
| {
 | |
|    png_debug(1, "in png_set_sig_bytes");
 | |
| 
 | |
|    if (png_ptr == NULL)
 | |
|       return;
 | |
| 
 | |
|    if (num_bytes > 8)
 | |
|       png_error(png_ptr, "Too many bytes for PNG signature");
 | |
| 
 | |
|    png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
 | |
| }
 | |
| 
 | |
| /* Checks whether the supplied bytes match the PNG signature.  We allow
 | |
|  * checking less than the full 8-byte signature so that those apps that
 | |
|  * already read the first few bytes of a file to determine the file type
 | |
|  * can simply check the remaining bytes for extra assurance.  Returns
 | |
|  * an integer less than, equal to, or greater than zero if sig is found,
 | |
|  * respectively, to be less than, to match, or be greater than the correct
 | |
|  * PNG signature (this is the same behaviour as strcmp, memcmp, etc).
 | |
|  */
 | |
| int PNGAPI
 | |
| png_sig_cmp(png_bytep sig, png_size_t start, png_size_t num_to_check)
 | |
| {
 | |
|    png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
 | |
| 
 | |
|    if (num_to_check > 8)
 | |
|       num_to_check = 8;
 | |
| 
 | |
|    else if (num_to_check < 1)
 | |
|       return (-1);
 | |
| 
 | |
|    if (start > 7)
 | |
|       return (-1);
 | |
| 
 | |
|    if (start + num_to_check > 8)
 | |
|       num_to_check = 8 - start;
 | |
| 
 | |
|    return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check)));
 | |
| }
 | |
| 
 | |
| #endif /* PNG_READ_SUPPORTED */
 | |
| 
 | |
| #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 | |
| /* Function to allocate memory for zlib and clear it to 0. */
 | |
| voidpf /* PRIVATE */
 | |
| png_zalloc(voidpf png_ptr, uInt items, uInt size)
 | |
| {
 | |
|    png_voidp ptr;
 | |
|    png_structp p=(png_structp)png_ptr;
 | |
|    png_uint_32 save_flags=p->flags;
 | |
|    png_alloc_size_t num_bytes;
 | |
| 
 | |
|    if (png_ptr == NULL)
 | |
|       return (NULL);
 | |
| 
 | |
|    if (items > PNG_UINT_32_MAX/size)
 | |
|    {
 | |
|      png_warning (p, "Potential overflow in png_zalloc()");
 | |
|      return (NULL);
 | |
|    }
 | |
|    num_bytes = (png_alloc_size_t)items * size;
 | |
| 
 | |
|    p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
 | |
|    ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes);
 | |
|    p->flags=save_flags;
 | |
| 
 | |
|    return ((voidpf)ptr);
 | |
| }
 | |
| 
 | |
| /* Function to free memory for zlib */
 | |
| void /* PRIVATE */
 | |
| png_zfree(voidpf png_ptr, voidpf ptr)
 | |
| {
 | |
|    png_free((png_structp)png_ptr, (png_voidp)ptr);
 | |
| }
 | |
| 
 | |
| /* Reset the CRC variable to 32 bits of 1's.  Care must be taken
 | |
|  * in case CRC is > 32 bits to leave the top bits 0.
 | |
|  */
 | |
| void /* PRIVATE */
 | |
| png_reset_crc(png_structp png_ptr)
 | |
| {
 | |
|    png_ptr->crc = crc32(0, Z_NULL, 0);
 | |
| }
 | |
| 
 | |
| /* Calculate the CRC over a section of data.  We can only pass as
 | |
|  * much data to this routine as the largest single buffer size.  We
 | |
|  * also check that this data will actually be used before going to the
 | |
|  * trouble of calculating it.
 | |
|  */
 | |
| void /* PRIVATE */
 | |
| png_calculate_crc(png_structp png_ptr, png_bytep ptr, png_size_t length)
 | |
| {
 | |
|    int need_crc = 1;
 | |
| 
 | |
|    if (png_ptr->chunk_name[0] & 0x20)                     /* ancillary */
 | |
|    {
 | |
|       if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
 | |
|           (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
 | |
|          need_crc = 0;
 | |
|    }
 | |
| 
 | |
|    else                                                    /* critical */
 | |
|    {
 | |
|       if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
 | |
|          need_crc = 0;
 | |
|    }
 | |
| 
 | |
|    if (need_crc)
 | |
|       png_ptr->crc = crc32(png_ptr->crc, ptr, (uInt)length);
 | |
| }
 | |
| 
 | |
| /* Allocate the memory for an info_struct for the application.  We don't
 | |
|  * really need the png_ptr, but it could potentially be useful in the
 | |
|  * future.  This should be used in favour of malloc(png_sizeof(png_info))
 | |
|  * and png_info_init() so that applications that want to use a shared
 | |
|  * libpng don't have to be recompiled if png_info changes size.
 | |
|  */
 | |
| png_infop PNGAPI
 | |
| png_create_info_struct(png_structp png_ptr)
 | |
| {
 | |
|    png_infop info_ptr;
 | |
| 
 | |
|    png_debug(1, "in png_create_info_struct");
 | |
| 
 | |
|    if (png_ptr == NULL)
 | |
|       return (NULL);
 | |
| 
 | |
| #ifdef PNG_USER_MEM_SUPPORTED
 | |
|    info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO,
 | |
|       png_ptr->malloc_fn, png_ptr->mem_ptr);
 | |
| #else
 | |
|    info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
 | |
| #endif
 | |
|    if (info_ptr != NULL)
 | |
|       png_info_init_3(&info_ptr, png_sizeof(png_info));
 | |
| 
 | |
|    return (info_ptr);
 | |
| }
 | |
| 
 | |
| /* This function frees the memory associated with a single info struct.
 | |
|  * Normally, one would use either png_destroy_read_struct() or
 | |
|  * png_destroy_write_struct() to free an info struct, but this may be
 | |
|  * useful for some applications.
 | |
|  */
 | |
| void PNGAPI
 | |
| png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr)
 | |
| {
 | |
|    png_infop info_ptr = NULL;
 | |
| 
 | |
|    png_debug(1, "in png_destroy_info_struct");
 | |
| 
 | |
|    if (png_ptr == NULL)
 | |
|       return;
 | |
| 
 | |
|    if (info_ptr_ptr != NULL)
 | |
|       info_ptr = *info_ptr_ptr;
 | |
| 
 | |
|    if (info_ptr != NULL)
 | |
|    {
 | |
|       png_info_destroy(png_ptr, info_ptr);
 | |
| 
 | |
| #ifdef PNG_USER_MEM_SUPPORTED
 | |
|       png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn,
 | |
|           png_ptr->mem_ptr);
 | |
| #else
 | |
|       png_destroy_struct((png_voidp)info_ptr);
 | |
| #endif
 | |
|       *info_ptr_ptr = NULL;
 | |
|    }
 | |
| }
 | |
| 
 | |
| /* Initialize the info structure.  This is now an internal function (0.89)
 | |
|  * and applications using it are urged to use png_create_info_struct()
 | |
|  * instead.
 | |
|  */
 | |
| 
 | |
| void PNGAPI
 | |
| png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size)
 | |
| {
 | |
|    png_infop info_ptr = *ptr_ptr;
 | |
| 
 | |
|    png_debug(1, "in png_info_init_3");
 | |
| 
 | |
|    if (info_ptr == NULL)
 | |
|       return;
 | |
| 
 | |
|    if (png_sizeof(png_info) > png_info_struct_size)
 | |
|    {
 | |
|       png_destroy_struct(info_ptr);
 | |
|       info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
 | |
|       *ptr_ptr = info_ptr;
 | |
|    }
 | |
| 
 | |
|    /* Set everything to 0 */
 | |
|    png_memset(info_ptr, 0, png_sizeof(png_info));
 | |
| }
 | |
| 
 | |
| void PNGAPI
 | |
| png_data_freer(png_structp png_ptr, png_infop info_ptr,
 | |
|    int freer, png_uint_32 mask)
 | |
| {
 | |
|    png_debug(1, "in png_data_freer");
 | |
| 
 | |
|    if (png_ptr == NULL || info_ptr == NULL)
 | |
|       return;
 | |
| 
 | |
|    if (freer == PNG_DESTROY_WILL_FREE_DATA)
 | |
|       info_ptr->free_me |= mask;
 | |
| 
 | |
|    else if (freer == PNG_USER_WILL_FREE_DATA)
 | |
|       info_ptr->free_me &= ~mask;
 | |
| 
 | |
|    else
 | |
|       png_warning(png_ptr,
 | |
|          "Unknown freer parameter in png_data_freer");
 | |
| }
 | |
| 
 | |
| void PNGAPI
 | |
| png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask,
 | |
|    int num)
 | |
| {
 | |
|    png_debug(1, "in png_free_data");
 | |
| 
 | |
|    if (png_ptr == NULL || info_ptr == NULL)
 | |
|       return;
 | |
| 
 | |
| #ifdef PNG_TEXT_SUPPORTED
 | |
|    /* Free text item num or (if num == -1) all text items */
 | |
|    if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
 | |
|    {
 | |
|       if (num != -1)
 | |
|       {
 | |
|          if (info_ptr->text && info_ptr->text[num].key)
 | |
|          {
 | |
|             png_free(png_ptr, info_ptr->text[num].key);
 | |
|             info_ptr->text[num].key = NULL;
 | |
|          }
 | |
|       }
 | |
| 
 | |
|       else
 | |
|       {
 | |
|          int i;
 | |
|          for (i = 0; i < info_ptr->num_text; i++)
 | |
|              png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
 | |
|          png_free(png_ptr, info_ptr->text);
 | |
|          info_ptr->text = NULL;
 | |
|          info_ptr->num_text=0;
 | |
|       }
 | |
|    }
 | |
| #endif
 | |
| 
 | |
| #ifdef PNG_tRNS_SUPPORTED
 | |
|    /* Free any tRNS entry */
 | |
|    if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
 | |
|    {
 | |
|       png_free(png_ptr, info_ptr->trans_alpha);
 | |
|       info_ptr->trans_alpha = NULL;
 | |
|       info_ptr->valid &= ~PNG_INFO_tRNS;
 | |
|    }
 | |
| #endif
 | |
| 
 | |
| #ifdef PNG_sCAL_SUPPORTED
 | |
|    /* Free any sCAL entry */
 | |
|    if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
 | |
|    {
 | |
| #if defined(PNG_FIXED_POINT_SUPPORTED) && !defined(PNG_FLOATING_POINT_SUPPORTED)
 | |
|       png_free(png_ptr, info_ptr->scal_s_width);
 | |
|       png_free(png_ptr, info_ptr->scal_s_height);
 | |
|       info_ptr->scal_s_width = NULL;
 | |
|       info_ptr->scal_s_height = NULL;
 | |
| #endif
 | |
|       info_ptr->valid &= ~PNG_INFO_sCAL;
 | |
|    }
 | |
| #endif
 | |
| 
 | |
| #ifdef PNG_pCAL_SUPPORTED
 | |
|    /* Free any pCAL entry */
 | |
|    if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
 | |
|    {
 | |
|       png_free(png_ptr, info_ptr->pcal_purpose);
 | |
|       png_free(png_ptr, info_ptr->pcal_units);
 | |
|       info_ptr->pcal_purpose = NULL;
 | |
|       info_ptr->pcal_units = NULL;
 | |
|       if (info_ptr->pcal_params != NULL)
 | |
|          {
 | |
|             int i;
 | |
|             for (i = 0; i < (int)info_ptr->pcal_nparams; i++)
 | |
|             {
 | |
|                png_free(png_ptr, info_ptr->pcal_params[i]);
 | |
|                info_ptr->pcal_params[i] = NULL;
 | |
|             }
 | |
|             png_free(png_ptr, info_ptr->pcal_params);
 | |
|             info_ptr->pcal_params = NULL;
 | |
|          }
 | |
|       info_ptr->valid &= ~PNG_INFO_pCAL;
 | |
|    }
 | |
| #endif
 | |
| 
 | |
| #ifdef PNG_iCCP_SUPPORTED
 | |
|    /* Free any iCCP entry */
 | |
|    if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
 | |
|    {
 | |
|       png_free(png_ptr, info_ptr->iccp_name);
 | |
|       png_free(png_ptr, info_ptr->iccp_profile);
 | |
|       info_ptr->iccp_name = NULL;
 | |
|       info_ptr->iccp_profile = NULL;
 | |
|       info_ptr->valid &= ~PNG_INFO_iCCP;
 | |
|    }
 | |
| #endif
 | |
| 
 | |
| #ifdef PNG_sPLT_SUPPORTED
 | |
|    /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
 | |
|    if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
 | |
|    {
 | |
|       if (num != -1)
 | |
|       {
 | |
|          if (info_ptr->splt_palettes)
 | |
|          {
 | |
|             png_free(png_ptr, info_ptr->splt_palettes[num].name);
 | |
|             png_free(png_ptr, info_ptr->splt_palettes[num].entries);
 | |
|             info_ptr->splt_palettes[num].name = NULL;
 | |
|             info_ptr->splt_palettes[num].entries = NULL;
 | |
|          }
 | |
|       }
 | |
| 
 | |
|       else
 | |
|       {
 | |
|          if (info_ptr->splt_palettes_num)
 | |
|          {
 | |
|             int i;
 | |
|             for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
 | |
|                png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i);
 | |
| 
 | |
|             png_free(png_ptr, info_ptr->splt_palettes);
 | |
|             info_ptr->splt_palettes = NULL;
 | |
|             info_ptr->splt_palettes_num = 0;
 | |
|          }
 | |
|          info_ptr->valid &= ~PNG_INFO_sPLT;
 | |
|       }
 | |
|    }
 | |
| #endif
 | |
| 
 | |
| #ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
 | |
|    if (png_ptr->unknown_chunk.data)
 | |
|    {
 | |
|       png_free(png_ptr, png_ptr->unknown_chunk.data);
 | |
|       png_ptr->unknown_chunk.data = NULL;
 | |
|    }
 | |
| 
 | |
|    if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
 | |
|    {
 | |
|       if (num != -1)
 | |
|       {
 | |
|           if (info_ptr->unknown_chunks)
 | |
|           {
 | |
|              png_free(png_ptr, info_ptr->unknown_chunks[num].data);
 | |
|              info_ptr->unknown_chunks[num].data = NULL;
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       else
 | |
|       {
 | |
|          int i;
 | |
| 
 | |
|          if (info_ptr->unknown_chunks_num)
 | |
|          {
 | |
|             for (i = 0; i < (int)info_ptr->unknown_chunks_num; i++)
 | |
|                png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i);
 | |
| 
 | |
|             png_free(png_ptr, info_ptr->unknown_chunks);
 | |
|             info_ptr->unknown_chunks = NULL;
 | |
|             info_ptr->unknown_chunks_num = 0;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| #endif
 | |
| 
 | |
| #ifdef PNG_hIST_SUPPORTED
 | |
|    /* Free any hIST entry */
 | |
|    if ((mask & PNG_FREE_HIST)  & info_ptr->free_me)
 | |
|    {
 | |
|       png_free(png_ptr, info_ptr->hist);
 | |
|       info_ptr->hist = NULL;
 | |
|       info_ptr->valid &= ~PNG_INFO_hIST;
 | |
|    }
 | |
| #endif
 | |
| 
 | |
|    /* Free any PLTE entry that was internally allocated */
 | |
|    if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
 | |
|    {
 | |
|       png_zfree(png_ptr, info_ptr->palette);
 | |
|       info_ptr->palette = NULL;
 | |
|       info_ptr->valid &= ~PNG_INFO_PLTE;
 | |
|       info_ptr->num_palette = 0;
 | |
|    }
 | |
| 
 | |
| #ifdef PNG_INFO_IMAGE_SUPPORTED
 | |
|    /* Free any image bits attached to the info structure */
 | |
|    if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
 | |
|    {
 | |
|       if (info_ptr->row_pointers)
 | |
|       {
 | |
|          int row;
 | |
|          for (row = 0; row < (int)info_ptr->height; row++)
 | |
|          {
 | |
|             png_free(png_ptr, info_ptr->row_pointers[row]);
 | |
|             info_ptr->row_pointers[row] = NULL;
 | |
|          }
 | |
|          png_free(png_ptr, info_ptr->row_pointers);
 | |
|          info_ptr->row_pointers = NULL;
 | |
|       }
 | |
|       info_ptr->valid &= ~PNG_INFO_IDAT;
 | |
|    }
 | |
| #endif
 | |
| 
 | |
|    if (num == -1)
 | |
|       info_ptr->free_me &= ~mask;
 | |
| 
 | |
|    else
 | |
|       info_ptr->free_me &= ~(mask & ~PNG_FREE_MUL);
 | |
| }
 | |
| 
 | |
| /* This is an internal routine to free any memory that the info struct is
 | |
|  * pointing to before re-using it or freeing the struct itself.  Recall
 | |
|  * that png_free() checks for NULL pointers for us.
 | |
|  */
 | |
| void /* PRIVATE */
 | |
| png_info_destroy(png_structp png_ptr, png_infop info_ptr)
 | |
| {
 | |
|    png_debug(1, "in png_info_destroy");
 | |
| 
 | |
|    png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
 | |
| 
 | |
| #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
 | |
|    if (png_ptr->num_chunk_list)
 | |
|    {
 | |
|       png_free(png_ptr, png_ptr->chunk_list);
 | |
|       png_ptr->chunk_list = NULL;
 | |
|       png_ptr->num_chunk_list = 0;
 | |
|    }
 | |
| #endif
 | |
| 
 | |
|    png_info_init_3(&info_ptr, png_sizeof(png_info));
 | |
| }
 | |
| #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 | |
| 
 | |
| /* This function returns a pointer to the io_ptr associated with the user
 | |
|  * functions.  The application should free any memory associated with this
 | |
|  * pointer before png_write_destroy() or png_read_destroy() are called.
 | |
|  */
 | |
| png_voidp PNGAPI
 | |
| png_get_io_ptr(png_structp png_ptr)
 | |
| {
 | |
|    if (png_ptr == NULL)
 | |
|       return (NULL);
 | |
| 
 | |
|    return (png_ptr->io_ptr);
 | |
| }
 | |
| 
 | |
| #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 | |
| #  ifdef PNG_STDIO_SUPPORTED
 | |
| /* Initialize the default input/output functions for the PNG file.  If you
 | |
|  * use your own read or write routines, you can call either png_set_read_fn()
 | |
|  * or png_set_write_fn() instead of png_init_io().  If you have defined
 | |
|  * PNG_NO_STDIO, you must use a function of your own because "FILE *" isn't
 | |
|  * necessarily available.
 | |
|  */
 | |
| void PNGAPI
 | |
| png_init_io(png_structp png_ptr, png_FILE_p fp)
 | |
| {
 | |
|    png_debug(1, "in png_init_io");
 | |
| 
 | |
|    if (png_ptr == NULL)
 | |
|       return;
 | |
| 
 | |
|    png_ptr->io_ptr = (png_voidp)fp;
 | |
| }
 | |
| #  endif
 | |
| 
 | |
| #  ifdef PNG_TIME_RFC1123_SUPPORTED
 | |
| /* Convert the supplied time into an RFC 1123 string suitable for use in
 | |
|  * a "Creation Time" or other text-based time string.
 | |
|  */
 | |
| png_charp PNGAPI
 | |
| png_convert_to_rfc1123(png_structp png_ptr, png_timep ptime)
 | |
| {
 | |
|    static PNG_CONST char short_months[12][4] =
 | |
|         {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
 | |
|          "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
 | |
| 
 | |
|    if (png_ptr == NULL)
 | |
|       return (NULL);
 | |
| 
 | |
|    if (png_ptr->time_buffer == NULL)
 | |
|    {
 | |
|       png_ptr->time_buffer = (png_charp)png_malloc(png_ptr, (png_uint_32)(29*
 | |
|          png_sizeof(char)));
 | |
|    }
 | |
| 
 | |
| #    ifdef USE_FAR_KEYWORD
 | |
|    {
 | |
|       char near_time_buf[29];
 | |
|       png_snprintf6(near_time_buf, 29, "%d %s %d %02d:%02d:%02d +0000",
 | |
|           ptime->day % 32, short_months[(ptime->month - 1) % 12],
 | |
|           ptime->year, ptime->hour % 24, ptime->minute % 60,
 | |
|           ptime->second % 61);
 | |
|       png_memcpy(png_ptr->time_buffer, near_time_buf,
 | |
|           29*png_sizeof(char));
 | |
|    }
 | |
| #    else
 | |
|    png_snprintf6(png_ptr->time_buffer, 29, "%d %s %d %02d:%02d:%02d +0000",
 | |
|        ptime->day % 32, short_months[(ptime->month - 1) % 12],
 | |
|        ptime->year, ptime->hour % 24, ptime->minute % 60,
 | |
|        ptime->second % 61);
 | |
| #    endif
 | |
|    return ((png_charp)png_ptr->time_buffer);
 | |
| }
 | |
| #  endif /* PNG_TIME_RFC1123_SUPPORTED */
 | |
| 
 | |
| #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 | |
| 
 | |
| png_charp PNGAPI
 | |
| png_get_copyright(png_structp png_ptr)
 | |
| {
 | |
|    png_ptr = png_ptr;  /* Silence compiler warning about unused png_ptr */
 | |
| #ifdef PNG_STRING_COPYRIGHT
 | |
|       return PNG_STRING_COPYRIGHT
 | |
| #else
 | |
| #  ifdef __STDC__
 | |
|    return ((png_charp) PNG_STRING_NEWLINE \
 | |
|      "libpng version 1.5.0beta37 - July 30, 2010" PNG_STRING_NEWLINE \
 | |
|      "Copyright (c) 1998-2010 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
 | |
|      "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
 | |
|      "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
 | |
|      PNG_STRING_NEWLINE);
 | |
| #  else
 | |
|       return ((png_charp) "libpng version 1.5.0beta37 - July 30, 2010\
 | |
|       Copyright (c) 1998-2010 Glenn Randers-Pehrson\
 | |
|       Copyright (c) 1996-1997 Andreas Dilger\
 | |
|       Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.");
 | |
| #  endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* The following return the library version as a short string in the
 | |
|  * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
 | |
|  * used with your application, print out PNG_LIBPNG_VER_STRING, which
 | |
|  * is defined in png.h.
 | |
|  * Note: now there is no difference between png_get_libpng_ver() and
 | |
|  * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
 | |
|  * it is guaranteed that png.c uses the correct version of png.h.
 | |
|  */
 | |
| png_charp PNGAPI
 | |
| png_get_libpng_ver(png_structp png_ptr)
 | |
| {
 | |
|    /* Version of *.c files used when building libpng */
 | |
|    return png_get_header_ver(png_ptr);
 | |
| }
 | |
| 
 | |
| png_charp PNGAPI
 | |
| png_get_header_ver(png_structp png_ptr)
 | |
| {
 | |
|    /* Version of *.h files used when building libpng */
 | |
|    png_ptr = png_ptr;  /* Silence compiler warning about unused png_ptr */
 | |
|    return ((png_charp) PNG_LIBPNG_VER_STRING);
 | |
| }
 | |
| 
 | |
| png_charp PNGAPI
 | |
| png_get_header_version(png_structp png_ptr)
 | |
| {
 | |
|    /* Returns longer string containing both version and date */
 | |
|    png_ptr = png_ptr;  /* Silence compiler warning about unused png_ptr */
 | |
| #ifdef __STDC__
 | |
|    return ((png_charp) PNG_HEADER_VERSION_STRING
 | |
| #  ifndef PNG_READ_SUPPORTED
 | |
|    "     (NO READ SUPPORT)"
 | |
| #  endif
 | |
|    PNG_STRING_NEWLINE);
 | |
| #else
 | |
|    return ((png_charp) PNG_HEADER_VERSION_STRING);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 | |
| #  ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
 | |
| int PNGAPI
 | |
| png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name)
 | |
| {
 | |
|    /* Check chunk_name and return "keep" value if it's on the list, else 0 */
 | |
|    int i;
 | |
|    png_bytep p;
 | |
|    if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list<=0)
 | |
|       return 0;
 | |
| 
 | |
|    p = png_ptr->chunk_list + png_ptr->num_chunk_list*5 - 5;
 | |
|    for (i = png_ptr->num_chunk_list; i; i--, p -= 5)
 | |
|       if (!png_memcmp(chunk_name, p, 4))
 | |
|         return ((int)*(p + 4));
 | |
|    return 0;
 | |
| }
 | |
| #  endif
 | |
| #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 | |
| 
 | |
| #ifdef PNG_READ_SUPPORTED
 | |
| /* This function, added to libpng-1.0.6g, is untested. */
 | |
| int PNGAPI
 | |
| png_reset_zstream(png_structp png_ptr)
 | |
| {
 | |
|    if (png_ptr == NULL)
 | |
|       return Z_STREAM_ERROR;
 | |
| 
 | |
|    return (inflateReset(&png_ptr->zstream));
 | |
| }
 | |
| #endif /* PNG_READ_SUPPORTED */
 | |
| 
 | |
| /* This function was added to libpng-1.0.7 */
 | |
| png_uint_32 PNGAPI
 | |
| png_access_version_number(void)
 | |
| {
 | |
|    /* Version of *.c files used when building libpng */
 | |
|    return((png_uint_32) PNG_LIBPNG_VER);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 | |
| #  ifdef PNG_SIZE_T
 | |
| /* Added at libpng version 1.2.6 */
 | |
|    PNG_EXTERN png_size_t PNGAPI png_convert_size PNGARG((size_t size));
 | |
| png_size_t PNGAPI
 | |
| png_convert_size(size_t size)
 | |
| {
 | |
|    if (size > (png_size_t)-1)
 | |
|       PNG_ABORT();  /* We haven't got access to png_ptr, so no png_error() */
 | |
| 
 | |
|    return ((png_size_t)size);
 | |
| }
 | |
| #  endif /* PNG_SIZE_T */
 | |
| 
 | |
| /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
 | |
| #  ifdef PNG_CHECK_cHRM_SUPPORTED
 | |
| 
 | |
| int /* PRIVATE */
 | |
| png_check_cHRM_fixed(png_structp png_ptr,
 | |
|    png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x,
 | |
|    png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y,
 | |
|    png_fixed_point blue_x, png_fixed_point blue_y)
 | |
| {
 | |
|    int ret = 1;
 | |
|    unsigned long xy_hi,xy_lo,yx_hi,yx_lo;
 | |
| 
 | |
|    png_debug(1, "in function png_check_cHRM_fixed");
 | |
| 
 | |
|    if (png_ptr == NULL)
 | |
|       return 0;
 | |
| 
 | |
|    if (white_x < 0 || white_y <= 0 ||
 | |
|          red_x < 0 ||   red_y <  0 ||
 | |
|        green_x < 0 || green_y <  0 ||
 | |
|         blue_x < 0 ||  blue_y <  0)
 | |
|    {
 | |
|       png_warning(png_ptr,
 | |
|         "Ignoring attempt to set negative chromaticity value");
 | |
|       ret = 0;
 | |
|    }
 | |
|    if (white_x > (png_fixed_point) PNG_UINT_31_MAX ||
 | |
|        white_y > (png_fixed_point) PNG_UINT_31_MAX ||
 | |
|          red_x > (png_fixed_point) PNG_UINT_31_MAX ||
 | |
|          red_y > (png_fixed_point) PNG_UINT_31_MAX ||
 | |
|        green_x > (png_fixed_point) PNG_UINT_31_MAX ||
 | |
|        green_y > (png_fixed_point) PNG_UINT_31_MAX ||
 | |
|         blue_x > (png_fixed_point) PNG_UINT_31_MAX ||
 | |
|         blue_y > (png_fixed_point) PNG_UINT_31_MAX )
 | |
|    {
 | |
|       png_warning(png_ptr,
 | |
|         "Ignoring attempt to set chromaticity value exceeding 21474.83");
 | |
|       ret = 0;
 | |
|    }
 | |
|    if (white_x > 100000L - white_y)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid cHRM white point");
 | |
|       ret = 0;
 | |
|    }
 | |
| 
 | |
|    if (red_x > 100000L - red_y)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid cHRM red point");
 | |
|       ret = 0;
 | |
|    }
 | |
| 
 | |
|    if (green_x > 100000L - green_y)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid cHRM green point");
 | |
|       ret = 0;
 | |
|    }
 | |
| 
 | |
|    if (blue_x > 100000L - blue_y)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid cHRM blue point");
 | |
|       ret = 0;
 | |
|    }
 | |
| 
 | |
|    png_64bit_product(green_x - red_x, blue_y - red_y, &xy_hi, &xy_lo);
 | |
|    png_64bit_product(green_y - red_y, blue_x - red_x, &yx_hi, &yx_lo);
 | |
| 
 | |
|    if (xy_hi == yx_hi && xy_lo == yx_lo)
 | |
|    {
 | |
|       png_warning(png_ptr,
 | |
|          "Ignoring attempt to set cHRM RGB triangle with zero area");
 | |
|       ret = 0;
 | |
|    }
 | |
| 
 | |
|    return ret;
 | |
| }
 | |
| #  endif /* PNG_CHECK_cHRM_SUPPORTED */
 | |
| 
 | |
| void /* PRIVATE */
 | |
| png_check_IHDR(png_structp png_ptr,
 | |
|    png_uint_32 width, png_uint_32 height, int bit_depth,
 | |
|    int color_type, int interlace_type, int compression_type,
 | |
|    int filter_type)
 | |
| {
 | |
|    int error = 0;
 | |
| 
 | |
|    /* Check for width and height valid values */
 | |
|    if (width == 0)
 | |
|    {
 | |
|       png_warning(png_ptr, "Image width is zero in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
|    if (height == 0)
 | |
|    {
 | |
|       png_warning(png_ptr, "Image height is zero in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
| #  ifdef PNG_SET_USER_LIMITS_SUPPORTED
 | |
|    if (width > png_ptr->user_width_max || width > PNG_USER_WIDTH_MAX)
 | |
| 
 | |
| #  else
 | |
|    if (width > PNG_USER_WIDTH_MAX)
 | |
| #  endif
 | |
|    {
 | |
|       png_warning(png_ptr, "Image width exceeds user limit in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
| #  ifdef PNG_SET_USER_LIMITS_SUPPORTED
 | |
|    if (height > png_ptr->user_height_max || height > PNG_USER_HEIGHT_MAX)
 | |
| #  else
 | |
|    if (height > PNG_USER_HEIGHT_MAX)
 | |
| #  endif
 | |
|    {
 | |
|       png_warning(png_ptr, "Image height exceeds user limit in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
|    if (width > PNG_UINT_31_MAX)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid image width in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
|    if ( height > PNG_UINT_31_MAX)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid image height in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
|    if ( width > (PNG_UINT_32_MAX
 | |
|                  >> 3)      /* 8-byte RGBA pixels */
 | |
|                  - 64       /* bigrowbuf hack */
 | |
|                  - 1        /* filter byte */
 | |
|                  - 7*8      /* rounding of width to multiple of 8 pixels */
 | |
|                  - 8)       /* extra max_pixel_depth pad */
 | |
|       png_warning(png_ptr, "Width is too large for libpng to process pixels");
 | |
| 
 | |
|    /* Check other values */
 | |
|    if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
 | |
|        bit_depth != 8 && bit_depth != 16)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid bit depth in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
|    if (color_type < 0 || color_type == 1 ||
 | |
|        color_type == 5 || color_type > 6)
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid color type in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
|    if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
 | |
|        ((color_type == PNG_COLOR_TYPE_RGB ||
 | |
|          color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
 | |
|          color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
 | |
|    {
 | |
|       png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
|    if (interlace_type >= PNG_INTERLACE_LAST)
 | |
|    {
 | |
|       png_warning(png_ptr, "Unknown interlace method in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
|    if (compression_type != PNG_COMPRESSION_TYPE_BASE)
 | |
|    {
 | |
|       png_warning(png_ptr, "Unknown compression method in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| 
 | |
| #  ifdef PNG_MNG_FEATURES_SUPPORTED
 | |
|    /* Accept filter_method 64 (intrapixel differencing) only if
 | |
|     * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
 | |
|     * 2. Libpng did not read a PNG signature (this filter_method is only
 | |
|     *    used in PNG datastreams that are embedded in MNG datastreams) and
 | |
|     * 3. The application called png_permit_mng_features with a mask that
 | |
|     *    included PNG_FLAG_MNG_FILTER_64 and
 | |
|     * 4. The filter_method is 64 and
 | |
|     * 5. The color_type is RGB or RGBA
 | |
|     */
 | |
|    if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) &&
 | |
|        png_ptr->mng_features_permitted)
 | |
|       png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
 | |
| 
 | |
|    if (filter_type != PNG_FILTER_TYPE_BASE)
 | |
|    {
 | |
|       if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
 | |
|          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
 | |
|          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
 | |
|          (color_type == PNG_COLOR_TYPE_RGB ||
 | |
|          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
 | |
|       {
 | |
|          png_warning(png_ptr, "Unknown filter method in IHDR");
 | |
|          error = 1;
 | |
|       }
 | |
| 
 | |
|       if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE)
 | |
|       {
 | |
|          png_warning(png_ptr, "Invalid filter method in IHDR");
 | |
|          error = 1;
 | |
|       }
 | |
|    }
 | |
| 
 | |
| #  else
 | |
|    if (filter_type != PNG_FILTER_TYPE_BASE)
 | |
|    {
 | |
|       png_warning(png_ptr, "Unknown filter method in IHDR");
 | |
|       error = 1;
 | |
|    }
 | |
| #  endif
 | |
| 
 | |
|    if (error == 1)
 | |
|       png_error(png_ptr, "Invalid IHDR data");
 | |
| }
 | |
| 
 | |
| #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
 | |
| /* ASCII to fp functions */
 | |
| /* Check an ASCII formated floating point value, see the more detailed
 | |
|  * comments in pngpriv.h
 | |
|  */
 | |
| /* The following is used internally to preserve the 'valid' flag */
 | |
| #define png_fp_add(state, flags) ((state) |= (flags))
 | |
| #define png_fp_set(state, value)\
 | |
|    ((state) = (value) | ((state) & PNG_FP_WAS_VALID))
 | |
| 
 | |
| /* Internal type codes: bits above the base state! */
 | |
| #define PNG_FP_SIGN   0  /* [+-] */
 | |
| #define PNG_FP_DOT    4  /* . */
 | |
| #define PNG_FP_DIGIT  8  /* [0123456789] */
 | |
| #define PNG_FP_E     12  /* [Ee] */
 | |
| 
 | |
| int /* PRIVATE */
 | |
| png_check_fp_number(png_charp string, png_size_t size, int *statep,
 | |
|    png_size_tp whereami)
 | |
| {
 | |
|    int state = *statep;
 | |
|    png_size_t i = *whereami;
 | |
| 
 | |
|    while (i < size)
 | |
|    {
 | |
|       int type;
 | |
|       /* First find the type of the next character */
 | |
|       {
 | |
|          char ch = string[i];
 | |
|          if (ch >= 48 && ch <= 57)
 | |
|             type = PNG_FP_DIGIT;
 | |
|          else switch (ch)
 | |
|          {
 | |
|          case 43: case 45:  type = PNG_FP_SIGN;  break;
 | |
|          case 46:           type = PNG_FP_DOT;   break;
 | |
|          case 69: case 101: type = PNG_FP_E;     break;
 | |
|          default:           goto PNG_FP_End;
 | |
|          }
 | |
|       }
 | |
| 
 | |
|       /* Now deal with this type according to the current
 | |
|        * state, the type is arranged to not overlap the
 | |
|        * bits of the PNG_FP_STATE.
 | |
|        */
 | |
|       switch ((state & PNG_FP_STATE) + type)
 | |
|       {
 | |
|       case PNG_FP_INTEGER + PNG_FP_SIGN:
 | |
|          if (state & PNG_FP_SAW_ANY)
 | |
|             goto PNG_FP_End; /* not a part of the number */
 | |
|          png_fp_add(state, PNG_FP_SAW_SIGN);
 | |
|          break;
 | |
|       case PNG_FP_INTEGER + PNG_FP_DOT:
 | |
|          /* Ok as trailer, ok as lead of fraction. */
 | |
|          if (state & PNG_FP_SAW_DOT) /* two dots */
 | |
|             goto PNG_FP_End;
 | |
|          else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
 | |
|             png_fp_add(state, PNG_FP_SAW_DOT);
 | |
|          else
 | |
|             png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
 | |
|          break;
 | |
|       case PNG_FP_INTEGER + PNG_FP_DIGIT:
 | |
|          if (state & PNG_FP_SAW_DOT) /* delayed fraction */
 | |
|             png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
 | |
|          png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID);
 | |
|          break;
 | |
|       case PNG_FP_INTEGER + PNG_FP_E:
 | |
|          if ((state & PNG_FP_SAW_DIGIT) == 0)
 | |
|             goto PNG_FP_End;
 | |
|          png_fp_set(state, PNG_FP_EXPONENT);
 | |
|          break;
 | |
|    /* case PNG_FP_FRACTION + PNG_FP_SIGN:
 | |
|          goto PNG_FP_End; ** no sign in exponent */
 | |
|    /* case PNG_FP_FRACTION + PNG_FP_DOT:
 | |
|          goto PNG_FP_End; ** Because SAW_DOT is always set */
 | |
|       case PNG_FP_FRACTION + PNG_FP_DIGIT:
 | |
|          png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID);
 | |
|          break;
 | |
|       case PNG_FP_FRACTION + PNG_FP_E:
 | |
|          /* This is correct because the trailing '.' on an
 | |
|           * integer is handled above - so we can only get here
 | |
|           * with the sequence ".E" (with no preceding digits).
 | |
|           */
 | |
|          if ((state & PNG_FP_SAW_DIGIT) == 0)
 | |
|             goto PNG_FP_End;
 | |
|          png_fp_set(state, PNG_FP_EXPONENT);
 | |
|          break;
 | |
|       case PNG_FP_EXPONENT + PNG_FP_SIGN:
 | |
|          if (state & PNG_FP_SAW_ANY)
 | |
|             goto PNG_FP_End; /* not a part of the number */
 | |
|          png_fp_add(state, PNG_FP_SAW_SIGN);
 | |
|          break;
 | |
|    /* case PNG_FP_EXPONENT + PNG_FP_DOT:
 | |
|          goto PNG_FP_End; */
 | |
|       case PNG_FP_EXPONENT + PNG_FP_DIGIT:
 | |
|          png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID);
 | |
|          break;
 | |
|    /* case PNG_FP_EXPONEXT + PNG_FP_E:
 | |
|          goto PNG_FP_End; */
 | |
|       default: goto PNG_FP_End; /* I.e. break 2 */
 | |
|       }
 | |
| 
 | |
|       /* The character seems ok, continue. */
 | |
|       ++i;
 | |
|    }
 | |
| 
 | |
| PNG_FP_End:
 | |
|    /* Here at the end, update the state and return the correct
 | |
|     * return code.
 | |
|     */
 | |
|    *statep = state;
 | |
|    *whereami = i;
 | |
| 
 | |
|    return (state & PNG_FP_SAW_DIGIT) != 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The same but for a complete string. */
 | |
| int
 | |
| png_check_fp_string(png_charp string, png_size_t size)
 | |
| {
 | |
|    int        state=0;
 | |
|    png_size_t index=0;
 | |
| 
 | |
|    return png_check_fp_number(string, size, &state, &index) &&
 | |
|       (index == size || string[index] == 0);
 | |
| }
 | |
| #endif /* pCAL or sCAL */
 | |
| 
 | |
| #ifdef PNG_READ_sCAL_SUPPORTED
 | |
| #  ifdef PNG_FLOATING_POINT_SUPPORTED
 | |
| /* Utility used below - a simple accurate power of ten from an integral
 | |
|  * exponent.
 | |
|  */
 | |
| static double
 | |
| png_pow10(int power)
 | |
| {
 | |
|    int recip = 0;
 | |
|    double d = 1;
 | |
|    /* Handle negative exponent with a reciprocal at the end because
 | |
|     * 10 is exact whereas .1 is inexact in base 2
 | |
|     */
 | |
|    if (power < 0)
 | |
|       recip = 1, power = -power;
 | |
|    if (power > 0)
 | |
|    {
 | |
|       /* Decompose power bitwise. */
 | |
|       double mult = 10;
 | |
|       do
 | |
|       {
 | |
|          if (power & 1) d *= mult;
 | |
|          mult *= mult;
 | |
|          power >>= 1;
 | |
|       }
 | |
|       while (power > 0);
 | |
| 
 | |
|       if (recip) d = 1/d;
 | |
|    }
 | |
|    /* else power is 0 and d is 1 */
 | |
| 
 | |
|    return d;
 | |
| }
 | |
| 
 | |
| /* Function to format a floating point value in ASCII with a given
 | |
|  * precision.
 | |
|  */
 | |
| void /* PRIVATE */
 | |
| png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
 | |
|     double fp, unsigned precision)
 | |
| {
 | |
|    /* We use standard functions from math.h, but not printf because
 | |
|     * that would require stdio.  The caller must supply a buffer of
 | |
|     * sufficient size or we will png_error.  The tests on size and
 | |
|     * the space in ascii[] consumed are indicated below.
 | |
|     */
 | |
|    if (precision < 1)
 | |
|       precision = DBL_DIG;
 | |
| 
 | |
|    /* Enforce the limit of the implementation precision too. */
 | |
|    if (precision > DBL_DIG+1)
 | |
|       precision = DBL_DIG+1;
 | |
| 
 | |
|    /* Basic sanity checks */
 | |
|    if (size >= precision+5) /* See the requirements below. */
 | |
|    {
 | |
|       if (fp < 0)
 | |
|       {
 | |
|          fp = -fp;
 | |
|          *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1*/
 | |
|          --size;
 | |
|       }
 | |
| 
 | |
|       if (fp >= DBL_MIN && fp <= DBL_MAX)
 | |
|       {
 | |
|          int exp;       /* A base 10 exponent */
 | |
|          double base;   /* 10^exp */
 | |
| 
 | |
|          /* First extract a base 10 exponent of the number,
 | |
|           * the calculation below rounds down when converting
 | |
|           * from base 2 to base 10 (multiply by log10(2) -
 | |
|           * 0.3010, but 77/256 is 0.3008, so exp needs to
 | |
|           * be increased.  Note that the arithmetic shift
 | |
|           * performs a floor() unlike C arithmetic - using a
 | |
|           * C multiply would break the following for negative
 | |
|           * exponents.
 | |
|           */
 | |
|          (void)frexp(fp, &exp); /* exponent to base 2 */
 | |
|          exp = (exp * 77) >> 8; /* <= exponent to base 10 */
 | |
|          /* Avoid underflow here. */
 | |
|          base = png_pow10(exp); /* May underflow */
 | |
|          while (base < DBL_MIN || base < fp)
 | |
|          {
 | |
|             /* And this may overflow. */
 | |
|             double test = png_pow10(exp+1);
 | |
|             if (test <= DBL_MAX)
 | |
|                ++exp, base = test;
 | |
|             else
 | |
|                break;
 | |
|          }
 | |
| 
 | |
|          /* Normalize fp and correct exp, after this fp is in the
 | |
|           * range [.1,1) and exp is both the exponent and the digit
 | |
|           * *before* which the decimal point should be inserted
 | |
|           * (starting with 0 for the first digit).  Note that this
 | |
|           * works even if 10^exp is out of range because of the
 | |
|           * test on DBL_MAX above.
 | |
|           */
 | |
|          fp /= base;
 | |
|          while (fp >= 1) fp /= 10, ++exp;
 | |
| 
 | |
|          /* Because of the code above fp may, at this point, be
 | |
|           * less than .1, this is ok because the code below can
 | |
|           * handle the leading zeros this generates, so no attempt
 | |
|           * is made to correct that here.
 | |
|           */
 | |
| 
 | |
|          {
 | |
|             int czero, clead, cdigits;
 | |
|             char exponent[10];
 | |
| 
 | |
|             /* Allow up to two leading zeros - this will not lengthen
 | |
|              * the number compared to using E-n.
 | |
|              */
 | |
|             if (exp < 0 && exp > -3) /* PLUS 3 TOTAL 4 */
 | |
|             {
 | |
|                czero = -exp; /* PLUS 2 digits: TOTAL 3 */
 | |
|                exp = 0;      /* Dot added below before first output. */
 | |
|             }
 | |
|             else
 | |
|                czero = 0;    /* No zeros to add */
 | |
| 
 | |
|             /* Generate the digit list, stripping trailing zeros and
 | |
|              * inserting a '.' before a digit if the exponent is 0.
 | |
|              */
 | |
|             clead = czero; /* Count of leading zeros */
 | |
|             cdigits = 0;   /* Count of digits in list. */
 | |
|             do
 | |
|             {
 | |
|                double d;
 | |
| 
 | |
|                fp *= 10;
 | |
|                /* Use modf here, not floor and subtract, so that
 | |
|         	* the separation is done in one step.  At the end
 | |
|         	* of the loop don't break the number into parts so
 | |
|         	* that the final digit is rounded.
 | |
|         	*/
 | |
|                if (cdigits+czero-clead+1 < (int)precision)
 | |
|         	  fp = modf(fp, &d);
 | |
|                else
 | |
|                {
 | |
|         	  d = floor(fp + .5);
 | |
| 
 | |
|         	  if (d > 9)
 | |
|         	  {
 | |
|         	     /* Rounding up to 10, handle that here. */
 | |
|         	     if (czero > 0)
 | |
|         	     {
 | |
|         	        --czero, d = 1;
 | |
|         		if (cdigits == 0) --clead;
 | |
|                      }
 | |
|         	     else
 | |
|         	     {
 | |
|         		while (cdigits > 0 && d > 9)
 | |
|         		{
 | |
|         		   int ch = *--ascii;
 | |
|         		   if (exp != (-1))
 | |
|         		      ++exp;
 | |
|         		   else if (ch == 46)
 | |
|         		   {
 | |
|         		      ch = *--ascii, ++size;
 | |
|         		      /* Advance exp to '1', so that the
 | |
|         		       * decimal point happens after the
 | |
|         		       * previous digit.
 | |
|         		       */
 | |
|         		      exp = 1;
 | |
|         		   }
 | |
| 
 | |
|         		   --cdigits;
 | |
|         		   d = ch - 47;  /* I.e. 1+(ch-48) */
 | |
|         		}
 | |
| 
 | |
|         		/* Did we reach the beginning? If so adjust the
 | |
|         		 * exponent but take into account the leading
 | |
|         		 * decimal point.
 | |
|         		 */
 | |
|         		if (d > 9)  /* cdigits == 0 */
 | |
|         		{
 | |
|         		   if (exp == (-1))
 | |
|         		   {
 | |
|         		      /* Leading decimal point (plus zeros?), if
 | |
|         		       * we lose the decimal point here it must
 | |
|         		       * be reentered below.
 | |
|         		       */
 | |
|         		      int ch = *--ascii;
 | |
|         		      if (ch == 46)
 | |
|         		         ++size, exp = 1;
 | |
|         		      /* Else lost a leading zero, so 'exp' is
 | |
|         		       * still ok at (-1)
 | |
|         		       */
 | |
|         		   }
 | |
|         		   else
 | |
|         		      ++exp;
 | |
| 
 | |
|         		   /* In all cases we output a '1' */
 | |
|         		   d = 1;
 | |
|         		}
 | |
|         	     }
 | |
|         	  }
 | |
|         	  fp = 0; /* Guarantees termination below. */
 | |
|                }
 | |
| 
 | |
|                if (d == 0)
 | |
|                {
 | |
|         	  ++czero;
 | |
|         	  if (cdigits == 0) ++clead;
 | |
|                }
 | |
|                else
 | |
|                {
 | |
|         	  /* Included embedded zeros in the digit count. */
 | |
|         	  cdigits += czero - clead;
 | |
|         	  clead = 0;
 | |
| 
 | |
|         	  while (czero > 0)
 | |
|         	  {
 | |
|         	     /* exp == (-1) means we just output the decimal
 | |
|         	      * place - after the DP don't adjust 'exp' any
 | |
|         	      * more!
 | |
|         	      */
 | |
|         	     if (exp != (-1)) 
 | |
|         	     {
 | |
|         	        if (exp == 0) *ascii++ = 46, --size;
 | |
|         	        /* PLUS 1: TOTAL 4 */
 | |
|         		--exp;
 | |
|         	     }
 | |
|         	     *ascii++ = 48, --czero;
 | |
|         	  }
 | |
| 
 | |
|         	  if (exp != (-1))
 | |
|         	  {
 | |
|         	     if (exp == 0) *ascii++ = 46, --size; /* counted above */
 | |
|         	     --exp;
 | |
|         	  }
 | |
|         	  *ascii++ = 48 + (int)d, ++cdigits;
 | |
|                }
 | |
|             }
 | |
|             while (cdigits+czero-clead < (int)precision && fp > DBL_MIN);
 | |
| 
 | |
|             /* The total output count (max) is now 4+precision */
 | |
| 
 | |
|             /* Check for an exponent, if we don't need one we are
 | |
|              * done and just need to terminate the string.  At
 | |
|              * this point exp==(-1) is effectively if flag - it got
 | |
|              * to '-1' because of the decrement after outputing
 | |
|              * the decimal point above (the exponent required is
 | |
|              * *not* -1!)
 | |
|              */
 | |
|             if (exp >= (-1) && exp <= 2)
 | |
|             {
 | |
|                /* The following only happens if we didn't output the
 | |
|         	* leading zeros above for negative exponent, so this
 | |
|         	* doest add to the digit requirement.  Note that the
 | |
|         	* two zeros here can only be output if the two leading
 | |
|         	* zeros were *not* output, so this doesn't increase
 | |
|         	* the output count.
 | |
|         	*/
 | |
|                while (--exp >= 0) *ascii++ = 48;
 | |
|                *ascii = 0;
 | |
|                /* Total buffer requirement (including the '\0') is
 | |
|         	* 5+precision - see check at the start.
 | |
|         	*/
 | |
|                return;
 | |
|             }
 | |
| 
 | |
|             /* Here if an exponent is required, adjust size for
 | |
|              * the digits we output but did not count.  The total
 | |
|              * digit output here so far is at most 1+precision - no
 | |
|              * decimal point and no leading or trailing zeros have
 | |
|              * been output.
 | |
|              */
 | |
|             size -= cdigits;
 | |
| 
 | |
|             *ascii++ = 69, --size;    /* 'E': PLUS 1 TOTAL 2+precision*/
 | |
|             if (exp < 0)
 | |
|             {
 | |
|                *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
 | |
|                exp = -exp;
 | |
|             }
 | |
| 
 | |
|             cdigits = 0;
 | |
|             while (exp > 0)
 | |
|             {
 | |
|                exponent[cdigits++] = 48 + exp % 10;
 | |
|                exp /= 10;
 | |
|             }
 | |
| 
 | |
|             /* Need another size check here for the exponent digits, so
 | |
|              * this need not be considered above.
 | |
|              */
 | |
|             if ((int)size > cdigits)
 | |
|             {
 | |
|                while (cdigits > 0) *ascii++ = exponent[--cdigits];
 | |
|                *ascii = 0;
 | |
|                return;
 | |
|             }
 | |
|          }
 | |
|       }
 | |
|       else if (!(fp >= DBL_MIN))
 | |
|       {
 | |
|          *ascii++ = 48; /* '0' */
 | |
|          *ascii = 0;
 | |
|          return;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          *ascii++ = 105; /* 'i' */
 | |
|          *ascii++ = 110; /* 'n' */
 | |
|          *ascii++ = 102; /* 'f' */
 | |
|          *ascii = 0;
 | |
|          return;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* Here on buffer too small. */
 | |
|    png_error(png_ptr, "ASCII conversion buffer too small");
 | |
| }
 | |
| 
 | |
| #  endif /* FLOATING_POINT */
 | |
| #endif /* READ_SCAL */
 | |
| 
 | |
| #if defined(PNG_FLOATING_POINT_SUPPORTED) &&\
 | |
|    !defined(PNG_FIXED_POINT_MACRO_SUPPORTED)
 | |
| png_fixed_point
 | |
| png_fixed(png_structp png_ptr, double fp, png_const_charp text)
 | |
| {
 | |
|    double r = floor(100000 * fp + .5);
 | |
|    if (r <= 2147483647. && r >= -2147483648.)
 | |
|       return (png_fixed_point)r;
 | |
| 
 | |
|    png_fixed_error(png_ptr, text, fp);
 | |
|    return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
 | |
| /* muldiv functions */
 | |
| /* This API takes signed arguments and rounds the result to the nearest
 | |
|  * integer (or, for a fixed point number - the standard argument - to
 | |
|  * the nearest .00001).  Overflow and divide by zero are signalled in
 | |
|  * the result, a boolean - true on success, false on overflow.
 | |
|  */
 | |
| int
 | |
| png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
 | |
|    png_int_32 div)
 | |
| {
 | |
|    /* Return a * times / div, rounded. */
 | |
|    if (div != 0)
 | |
|    {
 | |
|       if (a == 0 || times == 0)
 | |
|       {
 | |
|          *res = 0;
 | |
|          return 1;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
| #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | |
|          double r = a;
 | |
|          r *= times;
 | |
|          r /= div;
 | |
|          r = floor(r+.5);
 | |
|          /* A png_fixed_point is a 32 bit integer. */
 | |
|          if (r <= 2147483647. && r >= -2147483648.)
 | |
|          {
 | |
|             *res = (png_fixed_point)r;
 | |
|             return 1;
 | |
|          }
 | |
| #else
 | |
|          int negative = 0;
 | |
|          png_uint_32 A, T, D;
 | |
| 
 | |
|          if (a < 0)
 | |
|             negative = 1, A = -a;
 | |
|          else
 | |
|             A = a;
 | |
| 
 | |
|          if (times < 0)
 | |
|             negative = !negative, T = -times;
 | |
|          else
 | |
|             T = times;
 | |
| 
 | |
|          if (div < 0)
 | |
|             negative = !negative, D = -div;
 | |
|          else
 | |
|             D = div;
 | |
| 
 | |
|          /* Following can't overflow because the arguments only
 | |
|           * have 31 bits each, however the result may be 32 bits.
 | |
|           */
 | |
|          png_uint_32 s16 = (A >> 16) * (T & 0xffff) +
 | |
|         		   (A & 0xffff) * (T >> 16);
 | |
|          /* Can't overflow because the a*times bit is only 30
 | |
|           * bits at most.
 | |
|           */
 | |
|          png_uint_32 s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
 | |
|          png_uint_32 s00 = (A & 0xffff) * (T & 0xffff);
 | |
| 
 | |
|          s16 = (s16 & 0xffff) << 16;
 | |
|          s00 += s16;
 | |
|          if (s00 < s16) ++s32; /* carry */
 | |
| 
 | |
|          if (s32 < D) /* else overflow */
 | |
|          {
 | |
|             /* s32.s00 is now the 64 bit product, do a standard
 | |
|              * division, we know that s32 < D, so the maximum
 | |
|              * required shift is 31.
 | |
|              */
 | |
|             int bitshift = 32;
 | |
|             png_fixed_point result = 0; /* NOTE: signed */
 | |
| 
 | |
|             while (--bitshift >= 0)
 | |
|             {
 | |
|                png_uint_32 d32, d00;
 | |
| 
 | |
|                if (bitshift > 0)
 | |
|                   d32 = D >> (32-bitshift), d00 = D << bitshift;
 | |
|                else
 | |
|                   d32 = 0, d00 = D;
 | |
| 
 | |
|                if (s32 > d32)
 | |
|                {
 | |
|         	  if (s00 < d00) --s32; /* carry */
 | |
|                   s32 -= d32, s00 -= d00, result += 1<<bitshift;
 | |
|                }
 | |
|                else
 | |
|                   if (s32 == d32 && s00 >= d00)
 | |
|                      s32 = 0, s00 -= d00, result += 1<<bitshift;
 | |
|             }
 | |
| 
 | |
|             /* Handle the rounding. */
 | |
|             if (s00 >= (D >> 1)) ++result;
 | |
| 
 | |
|             if (negative) result = -result;
 | |
| 
 | |
|             /* Check for overflow. */
 | |
|             if (negative && result <= 0 || !negative && result >= 0)
 | |
|             {
 | |
|                *res = result;
 | |
|                return 1;
 | |
|             }
 | |
|          }
 | |
| #endif
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    return 0;
 | |
| }
 | |
| #endif /* READ_GAMMA || INCH_CONVERSIONS */
 | |
| 
 | |
| #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
 | |
| /* The following is for when the caller doesn't much care about the
 | |
|  * result.
 | |
|  */
 | |
| png_fixed_point
 | |
| png_muldiv_warn(png_structp png_ptr, png_fixed_point a, png_int_32 times,
 | |
|    png_int_32 div)
 | |
| {
 | |
|    png_fixed_point result;
 | |
|    if (png_muldiv(&result, a, times, div))
 | |
|       return result;
 | |
| 
 | |
|    png_warning(png_ptr, "fixed point overflow ignored");
 | |
|    return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gammma */
 | |
| /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
 | |
| png_fixed_point
 | |
| png_reciprocal(png_fixed_point a)
 | |
| {
 | |
| #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | |
|    double r = floor(1E10/a+.5);
 | |
|    if (r <= 2147483647. && r >= -2147483648.)
 | |
|       return (png_fixed_point)r;
 | |
| #else
 | |
|    png_fixed_point res;
 | |
|    if (png_muldiv(&res, 100000, 100000, a))
 | |
|       return res;
 | |
| #endif
 | |
| 
 | |
|    return 0; /* error/overflow */
 | |
| }
 | |
| 
 | |
| /* A local convenience routine. */
 | |
| static png_fixed_point
 | |
| png_product2(png_fixed_point a, png_fixed_point b)
 | |
| {
 | |
|    /* The required result is 1/a * 1/b, the following preserves accuracy. */
 | |
| #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | |
|    double r = a * 1E-5;
 | |
|    r *= b;
 | |
|    r = floor(r+.5);
 | |
|    if (r <= 2147483647. && r >= -2147483648.)
 | |
|       return (png_fixed_point)r;
 | |
| #else
 | |
|    png_fixed_point res;
 | |
|    if (png_muldiv(&res, a, b, 100000))
 | |
|       return res;
 | |
| #endif
 | |
| 
 | |
|    return 0; /* overflow */
 | |
| }
 | |
| 
 | |
| /* The inverse of the above. */
 | |
| png_fixed_point
 | |
| png_reciprocal2(png_fixed_point a, png_fixed_point b)
 | |
| {
 | |
|    /* The required result is 1/a * 1/b, the following preserves accuracy. */
 | |
| #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | |
|    double r = 1E15/a;
 | |
|    r /= b;
 | |
|    r = floor(r+.5);
 | |
|    if (r <= 2147483647. && r >= -2147483648.)
 | |
|       return (png_fixed_point)r;
 | |
| #else
 | |
|    /* This may overflow because the range of png_fixed_point isn't symmetric,
 | |
|     * but this API is only used for the product of file and screen gamma so it
 | |
|     * doesn't matter that the smallest number it can produce is 1/21474, not
 | |
|     * 1/100000
 | |
|     */
 | |
|    png_fixed_point res = png_product2(a, b);
 | |
|    if (res != 0)
 | |
|       return png_reciprocal(res);
 | |
| #endif
 | |
| 
 | |
|    return 0; /* overflow */
 | |
| }
 | |
| #endif /* READ_GAMMA */
 | |
| 
 | |
| #ifdef PNG_CHECK_cHRM_SUPPORTED
 | |
| /* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2,
 | |
|  * 2010: moved from pngset.c) */
 | |
| /*
 | |
|  *    Multiply two 32-bit numbers, V1 and V2, using 32-bit
 | |
|  *    arithmetic, to produce a 64 bit result in the HI/LO words.
 | |
|  *
 | |
|  *                  A B
 | |
|  *                x C D
 | |
|  *               ------
 | |
|  *              AD || BD
 | |
|  *        AC || CB || 0
 | |
|  *
 | |
|  *    where A and B are the high and low 16-bit words of V1,
 | |
|  *    C and D are the 16-bit words of V2, AD is the product of
 | |
|  *    A and D, and X || Y is (X << 16) + Y.
 | |
| */
 | |
| 
 | |
| void /* PRIVATE */
 | |
| png_64bit_product (long v1, long v2, unsigned long *hi_product,
 | |
|    unsigned long *lo_product)
 | |
| {
 | |
|    int a, b, c, d;
 | |
|    long lo, hi, x, y;
 | |
| 
 | |
|    a = (v1 >> 16) & 0xffff;
 | |
|    b = v1 & 0xffff;
 | |
|    c = (v2 >> 16) & 0xffff;
 | |
|    d = v2 & 0xffff;
 | |
| 
 | |
|    lo = b * d;                   /* BD */
 | |
|    x = a * d + c * b;            /* AD + CB */
 | |
|    y = ((lo >> 16) & 0xffff) + x;
 | |
| 
 | |
|    lo = (lo & 0xffff) | ((y & 0xffff) << 16);
 | |
|    hi = (y >> 16) & 0xffff;
 | |
| 
 | |
|    hi += a * c;                  /* AC */
 | |
| 
 | |
|    *hi_product = (unsigned long)hi;
 | |
|    *lo_product = (unsigned long)lo;
 | |
| }
 | |
| #endif /* CHECK_cHRM */
 | |
| 
 | |
| #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
 | |
| #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | |
| /* Fixed point gamma.
 | |
|  *
 | |
|  * To calculate gamma this code implements fast log() and exp() calls using only
 | |
|  * fixed point arithmetic.  This code has sufficient precision for either 8 or
 | |
|  * 16 bit sample values.
 | |
|  *
 | |
|  * The tables used here were calculated using simple 'bc' programs, but C double
 | |
|  * precision floating point arithmetic would work fine.  The programs are given
 | |
|  * at the head of each table.
 | |
|  *
 | |
|  * 8 bit log table
 | |
|  *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
 | |
|  *   255, so it's the base 2 logarithm of a normalized 8 bit floating point
 | |
|  *   mantissa.  The numbers are 32 bit fractions.
 | |
|  */
 | |
| static png_uint_32
 | |
| png_8bit_l2[128] =
 | |
| {
 | |
| #  if PNG_DO_BC
 | |
|       for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; }
 | |
| #  endif
 | |
|    4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
 | |
|    3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
 | |
|    3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
 | |
|    3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
 | |
|    3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
 | |
|    2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
 | |
|    2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
 | |
|    2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
 | |
|    2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
 | |
|    2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
 | |
|    1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
 | |
|    1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
 | |
|    1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
 | |
|    1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
 | |
|    1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
 | |
|    971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
 | |
|    803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
 | |
|    639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
 | |
|    479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
 | |
|    324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
 | |
|    172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
 | |
|    24347096U, 0U
 | |
| #if 0
 | |
|    /* The following are the values for 16 bit tables - these work fine for the 8
 | |
|     * bit conversions but produce very slightly larger errors in the 16 bit log
 | |
|     * (about 1.2 as opposed to 0.7 absolute error in the final value).  To use
 | |
|     * these all the shifts below must be adjusted appropriately.
 | |
|     */
 | |
|    65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
 | |
|    57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
 | |
|    50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
 | |
|    43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
 | |
|    37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
 | |
|    31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
 | |
|    25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
 | |
|    20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
 | |
|    15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
 | |
|    10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
 | |
|    6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
 | |
|    1119, 744, 372
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static png_uint_32
 | |
| png_log8bit(unsigned x)
 | |
| {
 | |
|    unsigned log = 0;
 | |
|    /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
 | |
|     * because the log is actually negate that means adding 1.  The final
 | |
|     * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
 | |
|     * input), return 7.99998 for the overflow (log 0) case - so the result is
 | |
|     * always at most 19 bits.
 | |
|     */
 | |
|    if ((x &= 0xff) == 0)
 | |
|       return 0xffffffff; 
 | |
| 
 | |
|    if ((x & 0xf0) == 0)
 | |
|       log  = 4, x <<= 4;
 | |
| 
 | |
|    if ((x & 0xc0) == 0)
 | |
|       log += 2, x <<= 2;
 | |
| 
 | |
|    if ((x & 0x80) == 0)
 | |
|       log += 1, x <<= 1;
 | |
| 
 | |
|    return (log << 16) + ((png_8bit_l2[x-128]+32768)>>16);
 | |
| }
 | |
| 
 | |
| /* The above gives exact (to 16 binary places) log2 values for 8 bit images,
 | |
|  * for 16 bit images we use the most significant 8 bits of the 16 bit value to
 | |
|  * get an approximation then multiply the approximation by a correction factor
 | |
|  * determined by the remaining up to 8 bits.  This requires an additional step
 | |
|  * in the 16 bit case.
 | |
|  *
 | |
|  * We want log2(value/65535), we have log2(v'/255), where:
 | |
|  *
 | |
|  *    value = v' * 256 + v''
 | |
|  *          = v' * f
 | |
|  *
 | |
|  * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
 | |
|  * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
 | |
|  * than 258.  The final factor also needs to correct for the fact that our 8 bit
 | |
|  * value is scaled by 255, whereas the 16 bit values must be scaled by 65535.
 | |
|  *
 | |
|  * This gives a final formula using a calculated value 'x' which is value/v' and
 | |
|  * scaling by 65536 to match the above table:
 | |
|  *
 | |
|  *   log2(x/257) * 65536
 | |
|  *
 | |
|  * Since these numbers are so close to '1' we can use simple linear
 | |
|  * interpolation between the two end values 256/257 (result -368.61) and 258/257
 | |
|  * (result 367.179).  The values used below are scaled by a further 64 to give
 | |
|  * 16 bit precision in the interpolation:
 | |
|  *
 | |
|  * Start (256): -23591
 | |
|  * Zero  (257):      0
 | |
|  * End   (258):  23499
 | |
|  */
 | |
| static png_uint_32
 | |
| png_log16bit(png_uint_32 x)
 | |
| {
 | |
|    unsigned log = 0;
 | |
| 
 | |
|    /* As above, but now the input has 16 bits. */
 | |
|    if ((x &= 0xffff) == 0)
 | |
|       return 0xffffffff;
 | |
| 
 | |
|    if ((x & 0xff00) == 0)
 | |
|       log  = 8, x <<= 8;
 | |
| 
 | |
|    if ((x & 0xf000) == 0)
 | |
|       log += 4, x <<= 4;
 | |
| 
 | |
|    if ((x & 0xc000) == 0)
 | |
|       log += 2, x <<= 2;
 | |
| 
 | |
|    if ((x & 0x8000) == 0)
 | |
|       log += 1, x <<= 1;
 | |
| 
 | |
|    /* Calculate the base logarithm from the top 8 bits as a 28 bit fractional
 | |
|     * value.
 | |
|     */
 | |
|    log <<= 28;
 | |
|    log += (png_8bit_l2[(x>>8)-128]+8) >> 4;
 | |
| 
 | |
|    /* Now we need to interpolate the factor, this requires a division by the top
 | |
|     * 8 bits.  Do this with maximum precision.
 | |
|     */
 | |
|    x = ((x << 16) + (x >> 9)) / (x >> 8);
 | |
| 
 | |
|    /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
 | |
|     * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
 | |
|     * 16 bits to interpolate to get the low bits of the result.  Round the
 | |
|     * answer.  Note that the end point values are scaled by 64 to retain overall
 | |
|     * precision and that 'log' is current scaled by an extra 12 bits, so adjust
 | |
|     * the overall scaling by 6-12.  Round at every step.
 | |
|     */
 | |
|    x -= 1U << 24;
 | |
|    if (x <= 65536U) /* <= '257' */
 | |
|       log += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
 | |
|    else
 | |
|       log -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
 | |
| 
 | |
|    return (log + 2048) >> 12;
 | |
| }
 | |
| 
 | |
| /* The 'exp()' case must invert the above, taking a 20 bit fixed point
 | |
|  * logarithmic value and returning a 16 or 8 bit number as appropriate.  In
 | |
|  * each case only the low 16 bits are relevant - the fraction - since the
 | |
|  * integer bits (the top 4) simply determine a shift.
 | |
|  *
 | |
|  * The worst case is the 16 bit distinction between 65535 and 65534, this
 | |
|  * requires perhaps spurious accuracty in the decoding of the logarithm to
 | |
|  * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
 | |
|  * of getting this accuracy in practice.
 | |
|  *
 | |
|  * To deal with this the following exp() function works out the exponent of the
 | |
|  * frational part of the logarithm by using an accurate 32 bit value from the
 | |
|  * top four fractional bits then multiplying in the remaining bits.
 | |
|  */
 | |
| static png_uint_32
 | |
| png_32bit_exp[16] =
 | |
| {
 | |
| #  if PNG_DO_BC
 | |
|       for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; }
 | |
| #  endif
 | |
|    /* NOTE: the first entry is deliberately set to the maximum 32 bit value. */
 | |
|    4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
 | |
|    3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
 | |
|    2553802834U, 2445529972U, 2341847524U, 2242560872U
 | |
| };
 | |
| 
 | |
| /* Adjustment table; provided to explain the numbers in the code below. */
 | |
| #if PNG_DO_BC
 | |
| for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
 | |
|    11 44937.64284865548751208448
 | |
|    10 45180.98734845585101160448
 | |
|     9 45303.31936980687359311872
 | |
|     8 45364.65110595323018870784
 | |
|     7 45395.35850361789624614912
 | |
|     6 45410.72259715102037508096
 | |
|     5 45418.40724413220722311168
 | |
|     4 45422.25021786898173001728
 | |
|     3 45424.17186732298419044352
 | |
|     2 45425.13273269940811464704
 | |
|     1 45425.61317555035558641664
 | |
|     0 45425.85339951654943850496
 | |
| #endif
 | |
| 
 | |
| static png_uint_32
 | |
| png_exp(png_uint_32 x)
 | |
| {
 | |
|    if (x <= 0xfffff) /* Else zero */
 | |
|    {
 | |
|       /* Obtain a 4 bit approximation */
 | |
|       png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];
 | |
| 
 | |
|       /* Incorporate the low 12 bits - these decrease the returned value by
 | |
|        * multiplying by a number less than 1 if the bit is set.  The multiplier
 | |
|        * is determined by the above table and the shift, notice that the values
 | |
|        * converge on 45426 and this is used to allow linear interpolation of the
 | |
|        * low bits.
 | |
|        */
 | |
|       if (x & 0x800)
 | |
|          e -= (((e >> 16) * 44938U) +  16U) >> 5;
 | |
| 
 | |
|       if (x & 0x400)
 | |
|          e -= (((e >> 16) * 45181U) +  32U) >> 6;
 | |
| 
 | |
|       if (x & 0x200)
 | |
|          e -= (((e >> 16) * 45303U) +  64U) >> 7;
 | |
| 
 | |
|       if (x & 0x100)
 | |
|          e -= (((e >> 16) * 45365U) + 128U) >> 8;
 | |
| 
 | |
|       if (x & 0x080)
 | |
|          e -= (((e >> 16) * 45395U) + 256U) >> 9;
 | |
| 
 | |
|       if (x & 0x040)
 | |
|          e -= (((e >> 16) * 45410U) + 512U) >> 10;
 | |
| 
 | |
|       /* And handle the low 6 bits in a single block. */
 | |
|       e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
 | |
| 
 | |
|       /* Handle the upper bits of x. */
 | |
|       e >>= x >> 16;
 | |
|       return e;
 | |
|    }
 | |
| 
 | |
|    return 0;
 | |
| }
 | |
| 
 | |
| static png_byte
 | |
| png_exp8bit(png_uint_32 log)
 | |
| {
 | |
|    /* Get a 32 bit value: */
 | |
|    png_uint_32 x = png_exp(log);
 | |
| 
 | |
|    /* Convert the 32 bit value to 0..255 by multiplying by 256-1, note that the
 | |
|     * second, rounding, step can't overflow because of the first, subtraction,
 | |
|     * step.
 | |
|     */
 | |
|    x -= x >> 8;
 | |
|    return (x + 0x7fffffU) >> 24;
 | |
| }
 | |
| 
 | |
| static png_uint_16
 | |
| png_exp16bit(png_uint_32 log)
 | |
| {
 | |
|    /* Get a 32 bit value: */
 | |
|    png_uint_32 x = png_exp(log);
 | |
| 
 | |
|    /* Convert the 32 bit value to 0..65535 by multiplying by 65536-1: */
 | |
|    x -= x >> 16;
 | |
|    return (x + 32767U) >> 16;
 | |
| }
 | |
| #endif /* FLOATING_ARITHMETIC */
 | |
| 
 | |
| png_byte
 | |
| png_gamma_8bit_correct(unsigned value, png_fixed_point gamma)
 | |
| {
 | |
|    if (value > 0 && value < 255)
 | |
|    {
 | |
| #     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | |
|          return (png_byte)floor(255*pow(value/255.,gamma*.00001)+.5);
 | |
| #     else
 | |
|          png_uint_32 log = png_log8bit(value);
 | |
|          png_fixed_point res;
 | |
|          if (png_muldiv(&res, gamma, log, PNG_FP_1))
 | |
|             return png_exp8bit(res);
 | |
| #     endif
 | |
| 
 | |
|       /* Overflow. */
 | |
|       value = 0;
 | |
|    }
 | |
| 
 | |
|    return value;
 | |
| }
 | |
| 
 | |
| png_uint_16
 | |
| png_gamma_16bit_correct(unsigned value, png_fixed_point gamma)
 | |
| {
 | |
|    if (value > 0 && value < 65535)
 | |
|    {
 | |
| #     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | |
|          return (png_uint_16)floor(65535*pow(value/65535.,gamma*.00001)+.5);
 | |
| #     else
 | |
|          png_uint_32 log = png_log16bit(value);
 | |
|          png_fixed_point res;
 | |
|          if (png_muldiv(&res, gamma, log, PNG_FP_1))
 | |
|             return png_exp16bit(res);
 | |
| #     endif
 | |
| 
 | |
|       /* Overflow. */
 | |
|       value = 0;
 | |
|    }
 | |
| 
 | |
|    return value;
 | |
| }
 | |
| 
 | |
| /* This does the right thing based on the bit_depth field of the
 | |
|  * png_struct, interpreting values as 8 or 16 bit.  While the result
 | |
|  * is nominally a 16 bit value if bit depth is 8 then the result is
 | |
|  * 8 bit (as are the arguments.)
 | |
|  */
 | |
| png_uint_16 /* PRIVATE */
 | |
| png_gamma_correct(png_structp png_ptr, unsigned value, png_fixed_point gamma)
 | |
| {
 | |
|    if (png_ptr->bit_depth == 8)
 | |
|       return png_gamma_8bit_correct(value, gamma);
 | |
|    else
 | |
|       return png_gamma_16bit_correct(value, gamma);
 | |
| }
 | |
| 
 | |
| /* This is the shared test on whether a gamma value is 'significant' - whether
 | |
|  * it is worth doing gamma correction.
 | |
|  */
 | |
| int /* PRIVATE */
 | |
| png_gamma_significant(png_fixed_point gamma)
 | |
| {
 | |
|    return gamma < PNG_FP_1-PNG_GAMMA_THRESHOLD_FIXED ||
 | |
|       gamma > PNG_FP_1+PNG_GAMMA_THRESHOLD_FIXED;
 | |
| }
 | |
| 
 | |
| /* Internal function to build a single 16 bit table - the table consists of
 | |
|  * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
 | |
|  * to shift the input values right (or 16-number_of_signifiant_bits).
 | |
|  *
 | |
|  * The caller is respoonsible for ensuring that the table gets cleaned up on
 | |
|  * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
 | |
|  * should be somewhere that will be cleaned.
 | |
|  */
 | |
| static void
 | |
| png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable,
 | |
|    PNG_CONST unsigned shift, PNG_CONST png_fixed_point gamma)
 | |
| {
 | |
|    /* Various values derived from 'shift': */
 | |
|    PNG_CONST unsigned num = 1U << (8U - shift);
 | |
|    PNG_CONST unsigned max = (1U << (16U - shift))-1U;
 | |
|    PNG_CONST unsigned max_by_2 = 1U << (15U-shift);
 | |
|    unsigned i;
 | |
| 
 | |
|    png_uint_16pp table = *ptable =
 | |
|       (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
 | |
| 
 | |
|    for (i = 0; i < num; i++)
 | |
|    {
 | |
|       png_uint_16p sub_table = table[i] =
 | |
|          (png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16));
 | |
| 
 | |
|       /* The 'threshold' test is repeated here because it can arise for one of
 | |
|        * the 16 bit tables even if the others don't hit it.
 | |
|        */
 | |
|       if (png_gamma_significant(gamma))
 | |
|       {
 | |
|          /* The old code would overflow at the end and this would cause the
 | |
|           * 'pow' function to return a result >1, resulting in an
 | |
|           * arithmetic error.  This code follows the spec exactly; ig is
 | |
|           * the recovered input sample, it always has 8-16 bits.
 | |
|           *
 | |
|           * We want input * 65535/max, rounded, the arithmetic fits in 32
 | |
|           * bits (unsigned) so long as max <= 32767.
 | |
|           */
 | |
|          unsigned j;
 | |
|          for (j = 0; j < 256; j++)
 | |
|          {
 | |
|             png_uint_16 ig = (j << (8-shift)) + i;
 | |
| #           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 | |
|                /* Inline the 'max' scaling operation: */
 | |
|                sub_table[j] = (png_uint_16)floor(65535*pow(ig/(double)max,
 | |
|                   gamma*.00001)+.5);
 | |
| #           else
 | |
|                if (shift)
 | |
|         	  ig = (ig * 65535U + max_by_2)/max;
 | |
|                sub_table[j] = png_gamma_16bit_correct(ig, gamma);
 | |
| #           endif
 | |
|          }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          /* We must still build a table, but do it the fast way. */
 | |
|          unsigned j;
 | |
|          for (j = 0; j < 256; j++)
 | |
|          {
 | |
|             png_uint_32 ig = (j << (8-shift)) + i;
 | |
|             if (shift)
 | |
|                ig = (ig * 65535U + max_by_2)/max;
 | |
|             sub_table[j] = ig;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| /* NOTE: this function expects the *inverse* of the overall gamma transformation
 | |
|  * required.
 | |
|  */
 | |
| static void
 | |
| png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
 | |
|    PNG_CONST unsigned shift, PNG_CONST png_fixed_point gamma)
 | |
| {
 | |
|    PNG_CONST unsigned num = 1U << (8U - shift);
 | |
|    PNG_CONST unsigned max = (1U << (16U - shift))-1U;
 | |
|    unsigned i;
 | |
|    png_uint_32 last;
 | |
| 
 | |
|    png_uint_16pp table = *ptable =
 | |
|       (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
 | |
| 
 | |
|    /* 'num' is the number of tables and also the number of low bits of low
 | |
|     * bits of the input 16 bit value used to select a table.  Each table is
 | |
|     * itself index by the high 8 bits of the value.
 | |
|     */
 | |
|    for (i = 0; i < num; i++)
 | |
|       table[i] = (png_uint_16p)png_malloc(png_ptr,
 | |
|          256 * png_sizeof(png_uint_16));
 | |
| 
 | |
|    /* 'gamma' is set to the reciprocal of the value calculated above, so
 | |
|     * pow(out,g) is an *input* value.  'last' is the last input value set.
 | |
|     *
 | |
|     * In the loop 'i' is used to find output values.  Since the output is 8
 | |
|     * bit there are only 256 possible values.  The tables are set up to
 | |
|     * select the closest possible output value for each input by finding
 | |
|     * the input value at the boundary between each pair of output values
 | |
|     * and filling the table up to that boundary with the lower output
 | |
|     * value.
 | |
|     *
 | |
|     * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9 bit
 | |
|     * values the code below uses a 16 bit value in i; the values start at
 | |
|     * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
 | |
|     * entries are filled with 255).  Start i at 128 and fill all 'last'
 | |
|     * table entries <= 'max'
 | |
|     */
 | |
|    last = 0;
 | |
|    for (i = 0; i < 255; ++i) /* 8 bit output value */
 | |
|    {
 | |
|       /* Find the corresponding maximum input value */
 | |
|       png_uint_16 out = i * 257U; /* 16 bit output value */
 | |
|       /* Find the boundary value in 16 bits: */
 | |
|       png_uint_16 bound = png_gamma_16bit_correct(out+128U, gamma);
 | |
|       /* Adjust (round) to (16-shift) bits: */
 | |
|       bound = (bound * max + 32768)/65535;
 | |
| 
 | |
|       while (last <= bound)
 | |
|       {
 | |
|          table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
 | |
|          last++;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* And fill in the final entries. */
 | |
|    while (last < (num << 8))
 | |
|    {
 | |
|       table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
 | |
|       last++;
 | |
|    }
 | |
| }
 | |
| 
 | |
| /* Build a single 8 bit table: same as the 16 bit case but much simpler (and
 | |
|  * typically much faster).  Note that libpng currently does no sBIT processing
 | |
|  * (apparently contrary to the spec) so a 256 entry table is always generated.
 | |
|  */
 | |
| static void
 | |
| png_build_8bit_table(png_structp png_ptr, png_bytepp ptable,
 | |
|    PNG_CONST png_fixed_point gamma)
 | |
| {
 | |
|    unsigned i;
 | |
|    png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
 | |
| 
 | |
|    if (png_gamma_significant(gamma)) for (i=0; i<256; i++)
 | |
|       table[i] = png_gamma_8bit_correct(i, gamma);
 | |
|    else for (i=0; i<245; ++i)
 | |
|       table[i] = i;
 | |
| }
 | |
| 
 | |
| /* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
 | |
|  * tables, we don't make a full table if we are reducing to 8-bit in
 | |
|  * the future.  Note also how the gamma_16 tables are segmented so that
 | |
|  * we don't need to allocate > 64K chunks for a full 16-bit table.
 | |
|  */
 | |
| void /* PRIVATE */
 | |
| png_build_gamma_table(png_structp png_ptr, png_byte bit_depth)
 | |
| {
 | |
|   png_debug(1, "in png_build_gamma_table");
 | |
| 
 | |
|   if (bit_depth <= 8)
 | |
|   {
 | |
|      png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
 | |
|         png_ptr->screen_gamma > 0 ?  png_reciprocal2(png_ptr->gamma,
 | |
|            png_ptr->screen_gamma) : PNG_FP_1);
 | |
| 
 | |
| #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
 | |
|    defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
 | |
|      if (png_ptr->transformations & ((PNG_BACKGROUND) | PNG_RGB_TO_GRAY))
 | |
|      {
 | |
|         png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
 | |
|            png_reciprocal(png_ptr->gamma));
 | |
| 
 | |
|         png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
 | |
|            png_ptr->screen_gamma > 0 ?  png_reciprocal(png_ptr->screen_gamma) :
 | |
|               png_ptr->gamma/* Probably doing rgb_to_gray */);
 | |
|      }
 | |
| #endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|      png_byte shift, sig_bit;
 | |
| 
 | |
|      if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
 | |
|      {
 | |
|         sig_bit = png_ptr->sig_bit.red;
 | |
| 
 | |
|         if (png_ptr->sig_bit.green > sig_bit)
 | |
|            sig_bit = png_ptr->sig_bit.green;
 | |
| 
 | |
|         if (png_ptr->sig_bit.blue > sig_bit)
 | |
|            sig_bit = png_ptr->sig_bit.blue;
 | |
|      }
 | |
|      else
 | |
|         sig_bit = png_ptr->sig_bit.gray;
 | |
| 
 | |
|      /* 16 bit gamma code uses this equation:
 | |
|       *
 | |
|       *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
 | |
|       *
 | |
|       * Where 'iv' is the input color value and 'ov' is the output value -
 | |
|       * pow(iv, gamma).
 | |
|       *
 | |
|       * Thus the gamma table consists of up to 256 256 entry tables.  The table
 | |
|       * is selected by the (8-gamma_shift) most significant of the low 8 bits of
 | |
|       * the color value then indexed by the upper 8 bits:
 | |
|       *
 | |
|       *   table[low bits][high 8 bits]
 | |
|       *
 | |
|       * So the table 'n' corresponds to all those 'iv' of:
 | |
|       *
 | |
|       *   <all high 8 bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
 | |
|       *
 | |
|       */
 | |
|      if (sig_bit > 0)
 | |
|         shift = 16U - sig_bit; /* shift == insignificant bits */
 | |
|      else
 | |
|         shift = 0; /* keep all 16 bits */
 | |
| 
 | |
|      if (png_ptr->transformations & PNG_16_TO_8)
 | |
|      {
 | |
|         /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
 | |
|          * the significant bits in the *input* when the output will
 | |
|          * eventually be 8 bits.  By default it is 11.
 | |
|          */
 | |
|         if (shift < (16U - PNG_MAX_GAMMA_8))
 | |
|            shift = (16U - PNG_MAX_GAMMA_8);
 | |
|      }
 | |
| 
 | |
|      if (shift > 8U)
 | |
|         shift = 8U; /* Guarantees at least one table! */
 | |
| 
 | |
|      png_ptr->gamma_shift = shift;
 | |
| 
 | |
|      if (png_ptr->transformations & (PNG_16_TO_8 | PNG_BACKGROUND))
 | |
|         png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
 | |
|            png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma,
 | |
|               png_ptr->screen_gamma) : PNG_FP_1);
 | |
|      else
 | |
|         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
 | |
|            png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
 | |
|               png_ptr->screen_gamma) : PNG_FP_1);
 | |
| 
 | |
| #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
 | |
|    defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
 | |
|      if (png_ptr->transformations & (PNG_BACKGROUND | PNG_RGB_TO_GRAY))
 | |
|      {
 | |
|         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
 | |
|            png_reciprocal(png_ptr->gamma));
 | |
| 
 | |
|         /* Notice that the '16 from 1' table should be full precision, however
 | |
|          * the lookup on this table still uses gamma_shift, os it can't be.
 | |
|          * TODO: fix this.
 | |
|          */
 | |
|         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
 | |
|            png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
 | |
|            png_ptr->gamma/* Probably doing rgb_to_gray */);
 | |
|      }
 | |
| #endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */
 | |
|   }
 | |
| }
 | |
| #endif /* READ_GAMMA */
 | |
| #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 | 
