/* * Bitmap Format Graphics Implementation * Nana C++ Library(http://www.nanapro.org) * Copyright(C) 2003-2016 Jinhao(cnjinhao@hotmail.com) * * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * @file: nana/paint/detail/image_bmp.hpp * @contributors: Ryan Gonzalez */ #ifndef NANA_PAINT_DETAIL_IMAGE_BMP_HPP #define NANA_PAINT_DETAIL_IMAGE_BMP_HPP #include "image_pixbuf.hpp" #include namespace nana{ namespace paint { namespace detail { #ifndef NANA_WINDOWS struct bitmap_file_header { unsigned short bfType; unsigned bfSize; unsigned short bfReserved1; unsigned short bfReserved2; unsigned bfOffBits; } __attribute__((packed)); struct bitmap_info_header { unsigned biSize; int biWidth; int biHeight; unsigned short biPlanes; unsigned short biBitCount; unsigned biCompression; unsigned biSizeImage; int biXPelsPerMeter; int biYPelsPerMeter; unsigned biClrUsed; unsigned biClrImportant; }__attribute__((packed)); struct rgb_quad { unsigned char rgbBlue; unsigned char rgbGreen; unsigned char rgbRed; unsigned char rgbReserved; }; struct bitmap_info { bitmap_info_header bmiHeader; rgb_quad bmiColors[1]; }__attribute__((packed)); #else typedef BITMAPFILEHEADER bitmap_file_header; typedef BITMAPINFO bitmap_info; typedef RGBQUAD rgb_quad; #endif class image_bmp :public basic_image_pixbuf { public: image_bmp(){} ~image_bmp() { this->close(); } bool open(const void* data, std::size_t bytes) override { auto bmp_data = reinterpret_cast(data); auto header = reinterpret_cast(bmp_data); if ((header->bfType != 0x4D42) || (header->bfSize != bytes)) return false; auto bits = reinterpret_cast(bmp_data + header->bfOffBits); auto info = reinterpret_cast(header + 1); //Bitmap file is 4byte-aligned for each line. std::size_t bytes_per_line; const std::size_t height_pixels = std::abs(info->bmiHeader.biHeight); if (0 == info->bmiHeader.biSizeImage) bytes_per_line = (((info->bmiHeader.biWidth * info->bmiHeader.biBitCount + 31) & ~31) >> 3); else bytes_per_line = info->bmiHeader.biSizeImage / height_pixels; pixbuf_.open(info->bmiHeader.biWidth, height_pixels); auto d = pixbuf_.raw_ptr(0); if (16 <= info->bmiHeader.biBitCount) { pixbuf_.put(bits, info->bmiHeader.biWidth, height_pixels, info->bmiHeader.biBitCount, bytes_per_line, (info->bmiHeader.biHeight < 0)); } else if (8 == info->bmiHeader.biBitCount) { const auto lend = d + info->bmiHeader.biWidth * height_pixels; if (info->bmiHeader.biHeight < 0) { auto s = bits; while (d < lend) { auto d_p = d; auto dpend = d_p + info->bmiHeader.biWidth; auto s_p = s; while (d_p != dpend) { auto & rgb = info->bmiColors[*s_p++]; d_p->element.red = rgb.rgbRed; d_p->element.green = rgb.rgbGreen; d_p->element.blue = rgb.rgbBlue; d_p->element.alpha_channel = rgb.rgbReserved; ++d_p; } d = dpend; s += bytes_per_line; } } else { const auto* s = bits + bytes_per_line * (height_pixels - 1); while (d < lend) { auto d_p = d; auto* const dpend = d_p + info->bmiHeader.biWidth; const auto * s_p = s; while (d_p != dpend) { auto & rgb = info->bmiColors[*s_p++]; d_p->element.red = rgb.rgbRed; d_p->element.green = rgb.rgbGreen; d_p->element.blue = rgb.rgbBlue; d_p->element.alpha_channel = rgb.rgbReserved; ++d_p; } d = dpend; s -= bytes_per_line; } } } else if (4 == info->bmiHeader.biBitCount) { const auto * const lend = d + info->bmiHeader.biWidth * height_pixels; if (info->bmiHeader.biHeight < 0) { const unsigned char* s = bits; while (d < lend) { auto d_p = d; auto * const dpend = d_p + info->bmiHeader.biWidth; unsigned index = 0; while (d_p != dpend) { auto & rgb = info->bmiColors[(index & 1) ? (s[index >> 1] & 0xF) : (s[index >> 1] & 0xF0) >> 4]; d_p->element.red = rgb.rgbRed; d_p->element.green = rgb.rgbGreen; d_p->element.blue = rgb.rgbBlue; d_p->element.alpha_channel = rgb.rgbReserved; ++d_p; ++index; } d = dpend; s += bytes_per_line; } } else { const auto* s = bits + bytes_per_line * (height_pixels - 1); while (d < lend) { auto d_p = d; auto * const dpend = d_p + info->bmiHeader.biWidth; unsigned index = 0; while (d_p != dpend) { auto & rgb = info->bmiColors[(index & 1) ? (s[index >> 1] & 0xF) : (s[index >> 1] & 0xF0) >> 4]; d_p->element.red = rgb.rgbRed; d_p->element.green = rgb.rgbGreen; d_p->element.blue = rgb.rgbBlue; d_p->element.alpha_channel = rgb.rgbReserved; ++d_p; ++index; } d = dpend; s -= bytes_per_line; } } } else if (2 == info->bmiHeader.biBitCount) { const auto * const lend = d + info->bmiHeader.biWidth * height_pixels; if (info->bmiHeader.biHeight < 0) { const unsigned char* s = bits; while (d < lend) { auto d_p = d; auto * const dpend = d_p + info->bmiHeader.biWidth; unsigned index = 0; while (d_p != dpend) { unsigned shift = (3 - (index & 0x3)) << 1; // (index % 4) * 2 auto& rgb = info->bmiColors[(s[index >> 2] & (0x3 << shift)) >> shift]; d_p->element.red = rgb.rgbRed; d_p->element.green = rgb.rgbGreen; d_p->element.blue = rgb.rgbBlue; d_p->element.alpha_channel = rgb.rgbReserved; ++d_p; ++index; } d = dpend; s += bytes_per_line; } } else { const auto* s = bits + bytes_per_line * (height_pixels - 1); while (d < lend) { auto d_p = d; auto * const dpend = d_p + info->bmiHeader.biWidth; unsigned index = 0; while (d_p != dpend) { unsigned shift = (3 - (index & 0x3)) << 1; // (index % 4) * 2 auto& rgb = info->bmiColors[(s[index >> 2] & (0x3 << shift)) >> shift]; d_p->element.red = rgb.rgbRed; d_p->element.green = rgb.rgbGreen; d_p->element.blue = rgb.rgbBlue; d_p->element.alpha_channel = rgb.rgbReserved; ++d_p; ++index; } d = dpend; s -= bytes_per_line; } } } else if (1 == info->bmiHeader.biBitCount) { const auto * const lend = d + info->bmiHeader.biWidth * height_pixels; if (info->bmiHeader.biHeight < 0) { const auto* s = bits; while (d < lend) { auto d_p = d; auto * const dpend = d_p + info->bmiHeader.biWidth; unsigned index = 0; while (d_p != dpend) { unsigned bi = (7 - (index & 7)); //(index % 8) auto & rgb = info->bmiColors[(s[index >> 3] & (1 << bi)) >> bi]; d_p->element.red = rgb.rgbRed; d_p->element.green = rgb.rgbGreen; d_p->element.blue = rgb.rgbBlue; d_p->element.alpha_channel = rgb.rgbReserved; ++d_p; ++index; } d = dpend; s += bytes_per_line; } } else { const auto* s = bits + bytes_per_line * (height_pixels - 1); while (d < lend) { auto d_p = d; auto * const dpend = d_p + info->bmiHeader.biWidth; unsigned index = 0; while (d_p != dpend) { unsigned bi = (7 - (index & 7)); auto & rgb = info->bmiColors[(s[index >> 3] & (1 << bi)) >> bi]; d_p->element.red = rgb.rgbRed; d_p->element.green = rgb.rgbGreen; d_p->element.blue = rgb.rgbBlue; d_p->element.alpha_channel = rgb.rgbReserved; ++d_p; ++index; } d = dpend; s -= bytes_per_line; } } } return true; } bool open(const nana::experimental::filesystem::path& filename) override { std::ifstream ifs(filename.string(), std::ios::binary); if(ifs) { ifs.seekg(0, std::ios::end); auto size = static_cast(ifs.tellg()); ifs.seekg(0, std::ios::beg); if(size <= static_cast(sizeof(bitmap_file_header))) return false; std::unique_ptr buffer(new char[static_cast(size)]); ifs.read(buffer.get(), size); if (size == static_cast(ifs.gcount())) return open(buffer.get(), size); } return false; } bool alpha_channel() const override { return false; } };//end class bmpfile }//end namespace detail }//end namespace paint }//end namespace nana #endif