Introduce usage of clang-format to format vulkan.hpp and the other sources.

This commit is contained in:
asuessenbach
2020-04-12 21:49:12 +02:00
parent ce9fd81bd9
commit f5e59484a6
68 changed files with 56064 additions and 35586 deletions

View File

@@ -19,30 +19,31 @@
#include "../utils/math.hpp"
#include "../utils/shaders.hpp"
#include "../utils/utils.hpp"
#include "vulkan/vulkan.hpp"
#include "SPIRV/GlslangToSpv.h"
#include "vulkan/vulkan.hpp"
#include <fstream>
#include <iomanip>
#include <thread>
// For timestamp code (getMilliseconds)
#ifdef WIN32
#include <Windows.h>
# include <Windows.h>
#else
#include <sys/time.h>
# include <sys/time.h>
#endif
typedef unsigned long long timestamp_t;
timestamp_t getMilliseconds()
timestamp_t getMilliseconds()
{
#ifdef WIN32
LARGE_INTEGER frequency;
BOOL useQPC = QueryPerformanceFrequency(&frequency);
if (useQPC)
BOOL useQPC = QueryPerformanceFrequency( &frequency );
if ( useQPC )
{
LARGE_INTEGER now;
QueryPerformanceCounter(&now);
return (1000LL * now.QuadPart) / frequency.QuadPart;
QueryPerformanceCounter( &now );
return ( 1000LL * now.QuadPart ) / frequency.QuadPart;
}
else
{
@@ -50,91 +51,124 @@ timestamp_t getMilliseconds()
}
#else
struct timeval now;
gettimeofday(&now, NULL);
return (now.tv_usec / 1000) + (timestamp_t)now.tv_sec;
gettimeofday( &now, NULL );
return ( now.tv_usec / 1000 ) + (timestamp_t)now.tv_sec;
#endif
}
static char const * AppName = "PipelineCache";
static char const * EngineName = "Vulkan.hpp";
static char const* AppName = "PipelineCache";
static char const* EngineName = "Vulkan.hpp";
int main(int /*argc*/, char ** /*argv*/)
int main( int /*argc*/, char ** /*argv*/ )
{
try
{
vk::UniqueInstance instance = vk::su::createInstance(AppName, EngineName, {}, vk::su::getInstanceExtensions());
#if !defined(NDEBUG)
vk::UniqueDebugUtilsMessengerEXT debugUtilsMessenger = vk::su::createDebugUtilsMessenger(instance);
vk::UniqueInstance instance = vk::su::createInstance( AppName, EngineName, {}, vk::su::getInstanceExtensions() );
#if !defined( NDEBUG )
vk::UniqueDebugUtilsMessengerEXT debugUtilsMessenger = vk::su::createDebugUtilsMessenger( instance );
#endif
vk::PhysicalDevice physicalDevice = instance->enumeratePhysicalDevices().front();
vk::PhysicalDeviceProperties properties = physicalDevice.getProperties();
vk::PhysicalDevice physicalDevice = instance->enumeratePhysicalDevices().front();
vk::PhysicalDeviceProperties properties = physicalDevice.getProperties();
vk::su::SurfaceData surfaceData(instance, AppName, vk::Extent2D(500, 500));
vk::su::SurfaceData surfaceData( instance, AppName, vk::Extent2D( 500, 500 ) );
std::pair<uint32_t, uint32_t> graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex(physicalDevice, *surfaceData.surface);
vk::UniqueDevice device = vk::su::createDevice(physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions());
std::pair<uint32_t, uint32_t> graphicsAndPresentQueueFamilyIndex =
vk::su::findGraphicsAndPresentQueueFamilyIndex( physicalDevice, *surfaceData.surface );
vk::UniqueDevice device =
vk::su::createDevice( physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() );
vk::UniqueCommandPool commandPool = vk::su::createCommandPool(device, graphicsAndPresentQueueFamilyIndex.first);
vk::UniqueCommandBuffer commandBuffer = std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool.get(), vk::CommandBufferLevel::ePrimary, 1)).front());
vk::UniqueCommandPool commandPool = vk::su::createCommandPool( device, graphicsAndPresentQueueFamilyIndex.first );
vk::UniqueCommandBuffer commandBuffer = std::move( device
->allocateCommandBuffersUnique( vk::CommandBufferAllocateInfo(
commandPool.get(), vk::CommandBufferLevel::ePrimary, 1 ) )
.front() );
vk::Queue graphicsQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.first, 0);
vk::Queue presentQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.second, 0);
vk::Queue graphicsQueue = device->getQueue( graphicsAndPresentQueueFamilyIndex.first, 0 );
vk::Queue presentQueue = device->getQueue( graphicsAndPresentQueueFamilyIndex.second, 0 );
vk::su::SwapChainData swapChainData(physicalDevice, device, *surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc,
vk::UniqueSwapchainKHR(), graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second);
vk::su::SwapChainData swapChainData( physicalDevice,
device,
*surfaceData.surface,
surfaceData.extent,
vk::ImageUsageFlagBits::eColorAttachment |
vk::ImageUsageFlagBits::eTransferSrc,
vk::UniqueSwapchainKHR(),
graphicsAndPresentQueueFamilyIndex.first,
graphicsAndPresentQueueFamilyIndex.second );
vk::su::DepthBufferData depthBufferData(physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent);
vk::su::DepthBufferData depthBufferData( physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent );
vk::su::TextureData textureData(physicalDevice, device);
commandBuffer->begin(vk::CommandBufferBeginInfo());
textureData.setImage(device, commandBuffer, vk::su::MonochromeImageGenerator({ 118, 185, 0 }));
vk::su::TextureData textureData( physicalDevice, device );
commandBuffer->begin( vk::CommandBufferBeginInfo() );
textureData.setImage( device, commandBuffer, vk::su::MonochromeImageGenerator( { 118, 185, 0 } ) );
vk::su::BufferData uniformBufferData(physicalDevice, device, sizeof(glm::mat4x4), vk::BufferUsageFlagBits::eUniformBuffer);
vk::su::copyToDevice(device, uniformBufferData.deviceMemory, vk::su::createModelViewProjectionClipMatrix(surfaceData.extent));
vk::su::BufferData uniformBufferData(
physicalDevice, device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer );
vk::su::copyToDevice(
device, uniformBufferData.deviceMemory, vk::su::createModelViewProjectionClipMatrix( surfaceData.extent ) );
vk::UniqueDescriptorSetLayout descriptorSetLayout = vk::su::createDescriptorSetLayout(device,
{ {vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex}, {vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment} });
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(vk::PipelineLayoutCreateInfo(vk::PipelineLayoutCreateFlags(), 1, &descriptorSetLayout.get()));
vk::UniqueDescriptorSetLayout descriptorSetLayout = vk::su::createDescriptorSetLayout(
device,
{ { vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex },
{ vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment } } );
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(
vk::PipelineLayoutCreateInfo( vk::PipelineLayoutCreateFlags(), 1, &descriptorSetLayout.get() ) );
vk::UniqueRenderPass renderPass = vk::su::createRenderPass(device, vk::su::pickSurfaceFormat(physicalDevice.getSurfaceFormatsKHR(surfaceData.surface.get())).format, depthBufferData.format);
vk::UniqueRenderPass renderPass = vk::su::createRenderPass(
device,
vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( surfaceData.surface.get() ) ).format,
depthBufferData.format );
glslang::InitializeProcess();
vk::UniqueShaderModule vertexShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T);
vk::UniqueShaderModule fragmentShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText_T_C);
vk::UniqueShaderModule vertexShaderModule =
vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T );
vk::UniqueShaderModule fragmentShaderModule =
vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText_T_C );
glslang::FinalizeProcess();
std::vector<vk::UniqueFramebuffer> framebuffers = vk::su::createFramebuffers(device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent);
std::vector<vk::UniqueFramebuffer> framebuffers = vk::su::createFramebuffers(
device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent );
vk::su::BufferData vertexBufferData(physicalDevice, device, sizeof(texturedCubeData), vk::BufferUsageFlagBits::eVertexBuffer);
vk::su::copyToDevice(device, vertexBufferData.deviceMemory, texturedCubeData, sizeof(texturedCubeData) / sizeof(texturedCubeData[0]));
vk::su::BufferData vertexBufferData(
physicalDevice, device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer );
vk::su::copyToDevice( device,
vertexBufferData.deviceMemory,
texturedCubeData,
sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) );
vk::UniqueDescriptorPool descriptorPool = vk::su::createDescriptorPool(device, { {vk::DescriptorType::eUniformBuffer, 1}, {vk::DescriptorType::eCombinedImageSampler, 1} });
vk::UniqueDescriptorSet descriptorSet = std::move(device->allocateDescriptorSetsUnique(vk::DescriptorSetAllocateInfo(*descriptorPool, 1, &*descriptorSetLayout)).front());
vk::UniqueDescriptorPool descriptorPool = vk::su::createDescriptorPool(
device, { { vk::DescriptorType::eUniformBuffer, 1 }, { vk::DescriptorType::eCombinedImageSampler, 1 } } );
vk::UniqueDescriptorSet descriptorSet = std::move(
device->allocateDescriptorSetsUnique( vk::DescriptorSetAllocateInfo( *descriptorPool, 1, &*descriptorSetLayout ) )
.front() );
vk::su::updateDescriptorSets(device, descriptorSet, {{vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, vk::UniqueBufferView()}}, textureData);
vk::su::updateDescriptorSets(
device,
descriptorSet,
{ { vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, vk::UniqueBufferView() } },
textureData );
/* VULKAN_KEY_START */
// Check disk for existing cache data
size_t startCacheSize = 0;
char *startCacheData = nullptr;
char * startCacheData = nullptr;
std::string cacheFileName = "pipeline_cache_data.bin";
std::ifstream readCacheStream(cacheFileName, std::ios_base::in | std::ios_base::binary);
if (readCacheStream.good())
std::string cacheFileName = "pipeline_cache_data.bin";
std::ifstream readCacheStream( cacheFileName, std::ios_base::in | std::ios_base::binary );
if ( readCacheStream.good() )
{
// Determine cache size
readCacheStream.seekg(0, readCacheStream.end);
startCacheSize = vk::su::checked_cast<size_t>(readCacheStream.tellg());
readCacheStream.seekg(0, readCacheStream.beg);
readCacheStream.seekg( 0, readCacheStream.end );
startCacheSize = vk::su::checked_cast<size_t>( readCacheStream.tellg() );
readCacheStream.seekg( 0, readCacheStream.beg );
// Allocate memory to hold the initial cache data
startCacheData = (char *)std::malloc(startCacheSize);
startCacheData = (char *)std::malloc( startCacheSize );
// Read the data into our buffer
readCacheStream.read(startCacheData, startCacheSize);
readCacheStream.read( startCacheData, startCacheSize );
// Clean up and print results
readCacheStream.close();
@@ -147,7 +181,7 @@ int main(int /*argc*/, char ** /*argv*/)
std::cout << " Pipeline cache miss!\n";
}
if (startCacheData != nullptr)
if ( startCacheData != nullptr )
{
// Check for cache validity
//
@@ -177,136 +211,160 @@ int main(int /*argc*/, char ** /*argv*/)
// as a stream of bytes, with the least significant byte first
// 16 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID
uint32_t headerLength = 0;
uint32_t cacheHeaderVersion = 0;
uint32_t vendorID = 0;
uint32_t deviceID = 0;
uint8_t pipelineCacheUUID[VK_UUID_SIZE] = {};
uint32_t headerLength = 0;
uint32_t cacheHeaderVersion = 0;
uint32_t vendorID = 0;
uint32_t deviceID = 0;
uint8_t pipelineCacheUUID[VK_UUID_SIZE] = {};
memcpy(&headerLength, (uint8_t *)startCacheData + 0, 4);
memcpy(&cacheHeaderVersion, (uint8_t *)startCacheData + 4, 4);
memcpy(&vendorID, (uint8_t *)startCacheData + 8, 4);
memcpy(&deviceID, (uint8_t *)startCacheData + 12, 4);
memcpy(pipelineCacheUUID, (uint8_t *)startCacheData + 16, VK_UUID_SIZE);
memcpy( &headerLength, (uint8_t *)startCacheData + 0, 4 );
memcpy( &cacheHeaderVersion, (uint8_t *)startCacheData + 4, 4 );
memcpy( &vendorID, (uint8_t *)startCacheData + 8, 4 );
memcpy( &deviceID, (uint8_t *)startCacheData + 12, 4 );
memcpy( pipelineCacheUUID, (uint8_t *)startCacheData + 16, VK_UUID_SIZE );
// Check each field and report bad values before freeing existing cache
bool badCache = false;
if (headerLength <= 0)
if ( headerLength <= 0 )
{
badCache = true;
std::cout << " Bad header length in " << cacheFileName << ".\n";
std::cout << " Cache contains: " << std::hex << std::setw(8) << headerLength << "\n";
std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << headerLength << "\n";
}
if (cacheHeaderVersion != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
if ( cacheHeaderVersion != VK_PIPELINE_CACHE_HEADER_VERSION_ONE )
{
badCache = true;
std::cout << " Unsupported cache header version in " << cacheFileName << ".\n";
std::cout << " Cache contains: " << std::hex << std::setw(8) << cacheHeaderVersion << "\n";
std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << cacheHeaderVersion << "\n";
}
if (vendorID != properties.vendorID)
if ( vendorID != properties.vendorID )
{
badCache = true;
std::cout << " Vender ID mismatch in " << cacheFileName << ".\n";
std::cout << " Cache contains: " << std::hex << std::setw(8) << vendorID << "\n";
std::cout << " Driver expects: " << std::hex << std::setw(8) << properties.vendorID << "\n";
std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << vendorID << "\n";
std::cout << " Driver expects: " << std::hex << std::setw( 8 ) << properties.vendorID << "\n";
}
if (deviceID != properties.deviceID)
if ( deviceID != properties.deviceID )
{
badCache = true;
std::cout << " Device ID mismatch in " << cacheFileName << ".\n";
std::cout << " Cache contains: " << std::hex << std::setw(8) << deviceID << "\n";
std::cout << " Driver expects: " << std::hex << std::setw(8) << properties.deviceID << "\n";
std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << deviceID << "\n";
std::cout << " Driver expects: " << std::hex << std::setw( 8 ) << properties.deviceID << "\n";
}
if (memcmp(pipelineCacheUUID, properties.pipelineCacheUUID, sizeof(pipelineCacheUUID)) != 0)
if ( memcmp( pipelineCacheUUID, properties.pipelineCacheUUID, sizeof( pipelineCacheUUID ) ) != 0 )
{
badCache = true;
std::cout << " UUID mismatch in " << cacheFileName << ".\n";
std::cout << " Cache contains: " << vk::su::UUID(pipelineCacheUUID) << "\n";
std::cout << " Driver expects: " << vk::su::UUID(properties.pipelineCacheUUID) << "\n";
std::cout << " Cache contains: " << vk::su::UUID( pipelineCacheUUID ) << "\n";
std::cout << " Driver expects: " << vk::su::UUID( properties.pipelineCacheUUID ) << "\n";
}
if (badCache)
if ( badCache )
{
// Don't submit initial cache data if any version info is incorrect
free(startCacheData);
free( startCacheData );
startCacheSize = 0;
startCacheData = nullptr;
// And clear out the old cache file for use in next run
std::cout << " Deleting cache entry " << cacheFileName << " to repopulate.\n";
if (remove(cacheFileName.c_str()) != 0)
if ( remove( cacheFileName.c_str() ) != 0 )
{
std::cerr << "Reading error";
exit(EXIT_FAILURE);
exit( EXIT_FAILURE );
}
}
}
// Feed the initial cache data into cache creation
vk::UniquePipelineCache pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo(vk::PipelineCacheCreateFlags(), startCacheSize, startCacheData));
vk::UniquePipelineCache pipelineCache = device->createPipelineCacheUnique(
vk::PipelineCacheCreateInfo( vk::PipelineCacheCreateFlags(), startCacheSize, startCacheData ) );
// Free our initialData now that pipeline cache has been created
free(startCacheData);
free( startCacheData );
startCacheData = NULL;
// Time (roughly) taken to create the graphics pipeline
timestamp_t start = getMilliseconds();
vk::UniquePipeline graphicsPipeline = vk::su::createGraphicsPipeline(device, pipelineCache, std::make_pair(*vertexShaderModule, nullptr), std::make_pair(*fragmentShaderModule, nullptr),
sizeof(texturedCubeData[0]), { { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } },
vk::FrontFace::eClockwise, true, pipelineLayout, renderPass);
timestamp_t start = getMilliseconds();
vk::UniquePipeline graphicsPipeline =
vk::su::createGraphicsPipeline( device,
pipelineCache,
std::make_pair( *vertexShaderModule, nullptr ),
std::make_pair( *fragmentShaderModule, nullptr ),
sizeof( texturedCubeData[0] ),
{ { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } },
vk::FrontFace::eClockwise,
true,
pipelineLayout,
renderPass );
timestamp_t elapsed = getMilliseconds() - start;
std::cout << " vkCreateGraphicsPipeline time: " << (double)elapsed << " ms\n";
vk::UniqueSemaphore imageAcquiredSemaphore = device->createSemaphoreUnique(vk::SemaphoreCreateInfo(vk::SemaphoreCreateFlags()));
vk::UniqueSemaphore imageAcquiredSemaphore =
device->createSemaphoreUnique( vk::SemaphoreCreateInfo( vk::SemaphoreCreateFlags() ) );
// Get the index of the next available swapchain image:
vk::ResultValue<uint32_t> currentBuffer = device->acquireNextImageKHR(swapChainData.swapChain.get(), UINT64_MAX, imageAcquiredSemaphore.get(), nullptr);
assert(currentBuffer.result == vk::Result::eSuccess);
assert(currentBuffer.value < framebuffers.size());
vk::ResultValue<uint32_t> currentBuffer =
device->acquireNextImageKHR( swapChainData.swapChain.get(), UINT64_MAX, imageAcquiredSemaphore.get(), nullptr );
assert( currentBuffer.result == vk::Result::eSuccess );
assert( currentBuffer.value < framebuffers.size() );
vk::ClearValue clearValues[2];
clearValues[0].color = vk::ClearColorValue(std::array<float, 4>({ 0.2f, 0.2f, 0.2f, 0.2f }));
clearValues[1].depthStencil = vk::ClearDepthStencilValue(1.0f, 0);
clearValues[0].color = vk::ClearColorValue( std::array<float, 4>( { 0.2f, 0.2f, 0.2f, 0.2f } ) );
clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 );
commandBuffer->beginRenderPass(vk::RenderPassBeginInfo(renderPass.get(), framebuffers[currentBuffer.value].get(), vk::Rect2D(vk::Offset2D(), surfaceData.extent), 2, clearValues), vk::SubpassContents::eInline);
commandBuffer->bindPipeline(vk::PipelineBindPoint::eGraphics, graphicsPipeline.get());
commandBuffer->bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, descriptorSet.get(), {});
commandBuffer->beginRenderPass( vk::RenderPassBeginInfo( renderPass.get(),
framebuffers[currentBuffer.value].get(),
vk::Rect2D( vk::Offset2D(), surfaceData.extent ),
2,
clearValues ),
vk::SubpassContents::eInline );
commandBuffer->bindPipeline( vk::PipelineBindPoint::eGraphics, graphicsPipeline.get() );
commandBuffer->bindDescriptorSets(
vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, descriptorSet.get(), {} );
commandBuffer->bindVertexBuffers(0, *vertexBufferData.buffer, {0});
commandBuffer->setViewport(0, vk::Viewport(0.0f, 0.0f, static_cast<float>(surfaceData.extent.width), static_cast<float>(surfaceData.extent.height), 0.0f, 1.0f));
commandBuffer->setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), surfaceData.extent));
commandBuffer->bindVertexBuffers( 0, *vertexBufferData.buffer, { 0 } );
commandBuffer->setViewport( 0,
vk::Viewport( 0.0f,
0.0f,
static_cast<float>( surfaceData.extent.width ),
static_cast<float>( surfaceData.extent.height ),
0.0f,
1.0f ) );
commandBuffer->setScissor( 0, vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ) );
commandBuffer->draw(12 * 3, 1, 0, 0);
commandBuffer->draw( 12 * 3, 1, 0, 0 );
commandBuffer->endRenderPass();
commandBuffer->end();
vk::UniqueFence drawFence = device->createFenceUnique(vk::FenceCreateInfo());
vk::UniqueFence drawFence = device->createFenceUnique( vk::FenceCreateInfo() );
vk::PipelineStageFlags waitDestinationStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput);
vk::SubmitInfo submitInfo(1, &imageAcquiredSemaphore.get(), &waitDestinationStageMask, 1, &commandBuffer.get());
graphicsQueue.submit(submitInfo, drawFence.get());
vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput );
vk::SubmitInfo submitInfo( 1, &imageAcquiredSemaphore.get(), &waitDestinationStageMask, 1, &commandBuffer.get() );
graphicsQueue.submit( submitInfo, drawFence.get() );
while (vk::Result::eTimeout == device->waitForFences(drawFence.get(), VK_TRUE, vk::su::FenceTimeout))
while ( vk::Result::eTimeout == device->waitForFences( drawFence.get(), VK_TRUE, vk::su::FenceTimeout ) )
;
presentQueue.presentKHR(vk::PresentInfoKHR(0, nullptr, 1, &swapChainData.swapChain.get(), &currentBuffer.value));
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
presentQueue.presentKHR(
vk::PresentInfoKHR( 0, nullptr, 1, &swapChainData.swapChain.get(), &currentBuffer.value ) );
std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) );
// Store away the cache that we've populated. This could conceivably happen
// earlier, depends on when the pipeline cache stops being populated
// internally.
std::vector<uint8_t> endCacheData = device->getPipelineCacheData(pipelineCache.get());
std::vector<uint8_t> endCacheData = device->getPipelineCacheData( pipelineCache.get() );
// Write the file to disk, overwriting whatever was there
std::ofstream writeCacheStream(cacheFileName, std::ios_base::out | std::ios_base::binary);
if (writeCacheStream.good())
std::ofstream writeCacheStream( cacheFileName, std::ios_base::out | std::ios_base::binary );
if ( writeCacheStream.good() )
{
writeCacheStream.write(reinterpret_cast<char const*>(endCacheData.data()), endCacheData.size());
writeCacheStream.write( reinterpret_cast<char const *>( endCacheData.data() ), endCacheData.size() );
writeCacheStream.close();
std::cout << " cacheData written to " << cacheFileName << "\n";
}
@@ -318,20 +376,20 @@ int main(int /*argc*/, char ** /*argv*/)
/* VULKAN_KEY_END */
}
catch (vk::SystemError& err)
catch ( vk::SystemError & err )
{
std::cout << "vk::SystemError: " << err.what() << std::endl;
exit(-1);
exit( -1 );
}
catch (std::runtime_error& err)
catch ( std::runtime_error & err )
{
std::cout << "std::runtime_error: " << err.what() << std::endl;
exit(-1);
exit( -1 );
}
catch (...)
catch ( ... )
{
std::cout << "unknown error\n";
exit(-1);
exit( -1 );
}
return 0;
}