Merge pull request #548 from baldurk/vs2010-compile-fixes

VS2010 compile fixes
This commit is contained in:
John Kessenich 2016-10-15 23:09:31 -06:00 committed by GitHub
commit 1fabc0f697
9 changed files with 170 additions and 164 deletions

View File

@ -75,6 +75,7 @@ public:
#if !defined (use_cpp11)
#include <cstdio>
#include <cstdint>
namespace spv {
class spirvbin_t : public spirvbin_base_t

View File

@ -797,7 +797,7 @@ Id Builder::makeFloat16Constant(float f16, bool specConstant)
spvutils::HexFloat<spvutils::FloatProxy<float>> fVal(f16);
spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>> f16Val(0);
fVal.castTo(f16Val, spvutils::round_direction::kToZero);
fVal.castTo(f16Val, spvutils::kRoundToZero);
unsigned value = f16Val.value().getAsFloat().get_value();

View File

@ -23,6 +23,19 @@
#include <limits>
#include <sstream>
#if defined(_MSC_VER) && _MSC_VER < 1700
namespace std {
bool isnan(double f)
{
return ::_isnan(f) != 0;
}
bool isinf(double f)
{
return ::_finite(f) == 0;
}
}
#endif
#include "bitutils.h"
namespace spvutils {
@ -30,7 +43,7 @@ namespace spvutils {
class Float16 {
public:
Float16(uint16_t v) : val(v) {}
Float16() = default;
Float16() {}
static bool isNan(const Float16& val) {
return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
}
@ -56,12 +69,12 @@ class Float16 {
// a value is Nan.
template <typename T>
struct FloatProxyTraits {
using uint_type = void;
typedef void uint_type;
};
template <>
struct FloatProxyTraits<float> {
using uint_type = uint32_t;
typedef uint32_t uint_type;
static bool isNan(float f) { return std::isnan(f); }
// Returns true if the given value is any kind of infinity.
static bool isInfinity(float f) { return std::isinf(f); }
@ -73,7 +86,7 @@ struct FloatProxyTraits<float> {
template <>
struct FloatProxyTraits<double> {
using uint_type = uint64_t;
typedef uint64_t uint_type;
static bool isNan(double f) { return std::isnan(f); }
// Returns true if the given value is any kind of infinity.
static bool isInfinity(double f) { return std::isinf(f); }
@ -85,7 +98,7 @@ struct FloatProxyTraits<double> {
template <>
struct FloatProxyTraits<Float16> {
using uint_type = uint16_t;
typedef uint16_t uint_type;
static bool isNan(Float16 f) { return Float16::isNan(f); }
// Returns true if the given value is any kind of infinity.
static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
@ -101,11 +114,11 @@ struct FloatProxyTraits<Float16> {
template <typename T>
class FloatProxy {
public:
using uint_type = typename FloatProxyTraits<T>::uint_type;
typedef typename FloatProxyTraits<T>::uint_type uint_type;
// Since this is to act similar to the normal floats,
// do not initialize the data by default.
FloatProxy() = default;
FloatProxy() {}
// Intentionally non-explicit. This is a proxy type so
// implicit conversions allow us to use it more transparently.
@ -164,13 +177,13 @@ std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
template <typename T>
struct HexFloatTraits {
// Integer type that can store this hex-float.
using uint_type = void;
typedef void uint_type;
// Signed integer type that can store this hex-float.
using int_type = void;
typedef void int_type;
// The numerical type that this HexFloat represents.
using underlying_type = void;
typedef void underlying_type;
// The type needed to construct the underlying type.
using native_type = void;
typedef void native_type;
// The number of bits that are actually relevant in the uint_type.
// This allows us to deal with, for example, 24-bit values in a 32-bit
// integer.
@ -188,10 +201,10 @@ struct HexFloatTraits {
// 1 sign bit, 8 exponent bits, 23 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<float>> {
using uint_type = uint32_t;
using int_type = int32_t;
using underlying_type = FloatProxy<float>;
using native_type = float;
typedef uint32_t uint_type;
typedef int32_t int_type;
typedef FloatProxy<float> underlying_type;
typedef float native_type;
static const uint_type num_used_bits = 32;
static const uint_type num_exponent_bits = 8;
static const uint_type num_fraction_bits = 23;
@ -202,10 +215,10 @@ struct HexFloatTraits<FloatProxy<float>> {
// 1 sign bit, 11 exponent bits, 52 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<double>> {
using uint_type = uint64_t;
using int_type = int64_t;
using underlying_type = FloatProxy<double>;
using native_type = double;
typedef uint64_t uint_type;
typedef int64_t int_type;
typedef FloatProxy<double> underlying_type;
typedef double native_type;
static const uint_type num_used_bits = 64;
static const uint_type num_exponent_bits = 11;
static const uint_type num_fraction_bits = 52;
@ -216,22 +229,21 @@ struct HexFloatTraits<FloatProxy<double>> {
// 1 sign bit, 5 exponent bits, 10 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<Float16>> {
using uint_type = uint16_t;
using int_type = int16_t;
using underlying_type = uint16_t;
using native_type = uint16_t;
typedef uint16_t uint_type;
typedef int16_t int_type;
typedef uint16_t underlying_type;
typedef uint16_t native_type;
static const uint_type num_used_bits = 16;
static const uint_type num_exponent_bits = 5;
static const uint_type num_fraction_bits = 10;
static const uint_type exponent_bias = 15;
};
enum class round_direction {
kToZero,
kToNearestEven,
kToPositiveInfinity,
kToNegativeInfinity,
max = kToNegativeInfinity
enum round_direction {
kRoundToZero,
kRoundToNearestEven,
kRoundToPositiveInfinity,
kRoundToNegativeInfinity
};
// Template class that houses a floating pointer number.
@ -240,10 +252,10 @@ enum class round_direction {
template <typename T, typename Traits = HexFloatTraits<T>>
class HexFloat {
public:
using uint_type = typename Traits::uint_type;
using int_type = typename Traits::int_type;
using underlying_type = typename Traits::underlying_type;
using native_type = typename Traits::native_type;
typedef typename Traits::uint_type uint_type;
typedef typename Traits::int_type int_type;
typedef typename Traits::underlying_type underlying_type;
typedef typename Traits::native_type native_type;
explicit HexFloat(T f) : value_(f) {}
@ -444,33 +456,23 @@ class HexFloat {
// constant_number < 0? 0: constant_number
// These convert the negative left-shifts into right shifts.
template <int_type N, typename enable = void>
struct negatable_left_shift {
static uint_type val(uint_type val) {
return static_cast<uint_type>(val >> -N);
}
};
template <typename int_type>
uint_type negatable_left_shift(int_type N, uint_type val)
{
if(N >= 0)
return val << N;
template <int_type N>
struct negatable_left_shift<N, typename std::enable_if<N >= 0>::type> {
static uint_type val(uint_type val) {
return static_cast<uint_type>(val << N);
}
};
return val >> -N;
}
template <int_type N, typename enable = void>
struct negatable_right_shift {
static uint_type val(uint_type val) {
return static_cast<uint_type>(val << -N);
}
};
template <typename int_type>
uint_type negatable_right_shift(int_type N, uint_type val)
{
if(N >= 0)
return val >> N;
template <int_type N>
struct negatable_right_shift<N, typename std::enable_if<N >= 0>::type> {
static uint_type val(uint_type val) {
return static_cast<uint_type>(val >> N);
}
};
return val << -N;
}
// Returns the significand, rounded to fit in a significand in
// other_T. This is shifted so that the most significant
@ -479,7 +481,7 @@ class HexFloat {
template <typename other_T>
typename other_T::uint_type getRoundedNormalizedSignificand(
round_direction dir, bool* carry_bit) {
using other_uint_type = typename other_T::uint_type;
typedef typename other_T::uint_type other_uint_type;
static const int_type num_throwaway_bits =
static_cast<int_type>(num_fraction_bits) -
static_cast<int_type>(other_T::num_fraction_bits);
@ -487,11 +489,11 @@ class HexFloat {
static const uint_type last_significant_bit =
(num_throwaway_bits < 0)
? 0
: negatable_left_shift<num_throwaway_bits>::val(1u);
: negatable_left_shift(num_throwaway_bits, 1u);
static const uint_type first_rounded_bit =
(num_throwaway_bits < 1)
? 0
: negatable_left_shift<num_throwaway_bits - 1>::val(1u);
: negatable_left_shift(num_throwaway_bits - 1, 1u);
static const uint_type throwaway_mask_bits =
num_throwaway_bits > 0 ? num_throwaway_bits : 0;
@ -513,22 +515,22 @@ class HexFloat {
// do.
if ((significand & throwaway_mask) == 0) {
return static_cast<other_uint_type>(
negatable_right_shift<num_throwaway_bits>::val(significand));
negatable_right_shift(num_throwaway_bits, significand));
}
bool round_away_from_zero = false;
// We actually have to narrow the significand here, so we have to follow the
// rounding rules.
switch (dir) {
case round_direction::kToZero:
case kRoundToZero:
break;
case round_direction::kToPositiveInfinity:
case kRoundToPositiveInfinity:
round_away_from_zero = !isNegative();
break;
case round_direction::kToNegativeInfinity:
case kRoundToNegativeInfinity:
round_away_from_zero = isNegative();
break;
case round_direction::kToNearestEven:
case kRoundToNearestEven:
// Have to round down, round bit is 0
if ((first_rounded_bit & significand) == 0) {
break;
@ -550,11 +552,11 @@ class HexFloat {
if (round_away_from_zero) {
return static_cast<other_uint_type>(
negatable_right_shift<num_throwaway_bits>::val(incrementSignificand(
negatable_right_shift(num_throwaway_bits, incrementSignificand(
significand, last_significant_bit, carry_bit)));
} else {
return static_cast<other_uint_type>(
negatable_right_shift<num_throwaway_bits>::val(significand));
negatable_right_shift(num_throwaway_bits, significand));
}
}
@ -608,9 +610,9 @@ class HexFloat {
if (is_nan) {
typename other_T::uint_type shifted_significand;
shifted_significand = static_cast<typename other_T::uint_type>(
negatable_left_shift<
negatable_left_shift(
static_cast<int_type>(other_T::num_fraction_bits) -
static_cast<int_type>(num_fraction_bits)>::val(significand));
static_cast<int_type>(num_fraction_bits), significand));
// We are some sort of Nan. We try to keep the bit-pattern of the Nan
// as close as possible. If we had to shift off bits so we are 0, then we
@ -623,9 +625,9 @@ class HexFloat {
}
bool round_underflow_up =
isNegative() ? round_dir == round_direction::kToNegativeInfinity
: round_dir == round_direction::kToPositiveInfinity;
using other_int_type = typename other_T::int_type;
isNegative() ? round_dir == kRoundToNegativeInfinity
: round_dir == kRoundToPositiveInfinity;
typedef typename other_T::int_type other_int_type;
// setFromSignUnbiasedExponentAndNormalizedSignificand will
// zero out any underflowing value (but retain the sign).
other.setFromSignUnbiasedExponentAndNormalizedSignificand(
@ -664,9 +666,9 @@ inline uint8_t get_nibble_from_character(int character) {
// Outputs the given HexFloat to the stream.
template <typename T, typename Traits>
std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
using HF = HexFloat<T, Traits>;
using uint_type = typename HF::uint_type;
using int_type = typename HF::int_type;
typedef HexFloat<T, Traits> HF;
typedef typename HF::uint_type uint_type;
typedef typename HF::int_type int_type;
static_assert(HF::num_used_bits != 0,
"num_used_bits must be non-zero for a valid float");
@ -745,7 +747,7 @@ inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
if (next_char == '-' || next_char == '+') {
// Fail the parse. Emulate standard behaviour by setting the value to
// the zero value, and set the fail bit on the stream.
value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0});
value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
is.setstate(std::ios_base::failbit);
return true;
}
@ -777,7 +779,7 @@ inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
value.set_value(val);
// In the failure case, map -0.0 to 0.0.
if (is.fail() && value.getUnsignedBits() == 0u) {
value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0});
value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
}
if (val.isInfinity()) {
// Fail the parse. Emulate standard behaviour by setting the value to
@ -812,7 +814,7 @@ ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
// Then convert to 16-bit float, saturating at infinities, and
// rounding toward zero.
float_val.castTo(value, round_direction::kToZero);
float_val.castTo(value, kRoundToZero);
// Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
// fail bit and set the lowest or highest value.

View File

@ -673,11 +673,11 @@ void CompileAndLinkShaderFiles()
// they are all getting linked together.)
glslang::TWorkItem* workItem;
while (Worklist.remove(workItem)) {
ShaderCompUnit compUnit = {
ShaderCompUnit compUnit(
FindLanguage(workItem->name),
workItem->name,
ReadFileData(workItem->name.c_str())
};
);
if (! compUnit.text) {
usage();

View File

@ -68,6 +68,10 @@ inline long long int strtoll (const char* str, char** endptr, int base)
{
return _strtoi64(str, endptr, base);
}
inline unsigned long long int strtoull (const char* str, char** endptr, int base)
{
return _strtoui64(str, endptr, base);
}
inline long long int atoll (const char* str)
{
return strtoll(str, NULL, 10);

View File

@ -361,7 +361,7 @@ const TFunction* TParseContextBase::selectFunction(
return viableCandidates.front();
// 4. find best...
auto betterParam = [&call, &better](const TFunction& can1, const TFunction& can2){
auto betterParam = [&call, &better](const TFunction& can1, const TFunction& can2) -> bool {
// is call -> can2 better than call -> can1 for any parameter
bool hasBetterParam = false;
for (int param = 0; param < call.getParamCount(); ++param) {

View File

@ -4873,7 +4873,7 @@ const TFunction* TParseContext::findFunction400(const TSourceLoc& loc, const TFu
symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
// can 'from' convert to 'to'?
const auto convertible = [this](const TType& from, const TType& to) {
const auto convertible = [this](const TType& from, const TType& to) -> bool {
if (from == to)
return true;
if (from.isArray() || to.isArray() || ! from.sameElementShape(to))
@ -4884,7 +4884,7 @@ const TFunction* TParseContext::findFunction400(const TSourceLoc& loc, const TFu
// Is 'to2' a better conversion than 'to1'?
// Ties should not be considered as better.
// Assumes 'convertible' already said true.
const auto better = [](const TType& from, const TType& to1, const TType& to2) {
const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
// 1. exact match
if (from == to2)
return from != to1;

View File

@ -690,10 +690,10 @@ TEST(HexFloatOperationTests, NonRounding) {
bool carry_bit = false;
spvutils::round_direction rounding[] = {
spvutils::round_direction::kToZero,
spvutils::round_direction::kToNearestEven,
spvutils::round_direction::kToPositiveInfinity,
spvutils::round_direction::kToNegativeInfinity};
spvutils::kRoundToZero,
spvutils::kRoundToNearestEven,
spvutils::kRoundToPositiveInfinity,
spvutils::kRoundToNegativeInfinity};
// Everything fits, so this should be straight-forward
for (spvutils::round_direction round : rounding) {
@ -725,7 +725,6 @@ TEST(HexFloatOperationTests, NonRounding) {
}
}
using RD = spvutils::round_direction;
struct RoundSignificandCase {
float source_float;
std::pair<int16_t, bool> expected_results;
@ -751,49 +750,49 @@ TEST_P(HexFloatRoundTest, RoundDownToFP16) {
INSTANTIATE_TEST_CASE_P(F32ToF16, HexFloatRoundTest,
::testing::ValuesIn(std::vector<RoundSignificandCase>(
{
{float_fractions({0}), std::make_pair(half_bits_set({}), false), RD::kToZero},
{float_fractions({0}), std::make_pair(half_bits_set({}), false), RD::kToNearestEven},
{float_fractions({0}), std::make_pair(half_bits_set({}), false), RD::kToPositiveInfinity},
{float_fractions({0}), std::make_pair(half_bits_set({}), false), RD::kToNegativeInfinity},
{float_fractions({0, 1}), std::make_pair(half_bits_set({0}), false), RD::kToZero},
{float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToZero},
{float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToNearestEven},
{float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToPositiveInfinity},
{float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), RD::kToZero},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0, 9}), false), RD::kToPositiveInfinity},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), RD::kToNegativeInfinity},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), RD::kToNearestEven},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNearestEven},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), RD::kToZero},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), RD::kToPositiveInfinity},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), RD::kToNegativeInfinity},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), RD::kToNearestEven},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), spvutils::kRoundToPositiveInfinity},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), spvutils::kRoundToNearestEven},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), RD::kToZero},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), RD::kToPositiveInfinity},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), RD::kToNegativeInfinity},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), RD::kToNearestEven},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), RD::kToZero},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), RD::kToPositiveInfinity},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), RD::kToNegativeInfinity},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), RD::kToNearestEven},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToPositiveInfinity},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNegativeInfinity},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), RD::kToZero},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), RD::kToPositiveInfinity},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), RD::kToNegativeInfinity},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), RD::kToNearestEven},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
// Carries
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), RD::kToZero},
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), RD::kToPositiveInfinity},
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), RD::kToNegativeInfinity},
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), RD::kToNearestEven},
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), spvutils::kRoundToPositiveInfinity},
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), spvutils::kRoundToNearestEven},
// Cases where original number was denorm. Note: this should have no effect
// the number is pre-normalized.
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -128)), std::make_pair(half_bits_set({0}), false), RD::kToZero},
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -129)), std::make_pair(half_bits_set({0, 9}), false), RD::kToPositiveInfinity},
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -131)), std::make_pair(half_bits_set({0}), false), RD::kToNegativeInfinity},
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -130)), std::make_pair(half_bits_set({0, 9}), false), RD::kToNearestEven},
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -128)), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -129)), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -131)), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -130)), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
})),);
// clang-format on
@ -810,10 +809,10 @@ TEST_P(HexFloatRoundUpSignificandTest, Widening) {
bool carry_bit = false;
spvutils::round_direction rounding[] = {
spvutils::round_direction::kToZero,
spvutils::round_direction::kToNearestEven,
spvutils::round_direction::kToPositiveInfinity,
spvutils::round_direction::kToNegativeInfinity};
spvutils::kRoundToZero,
spvutils::kRoundToNearestEven,
spvutils::kRoundToPositiveInfinity,
spvutils::kRoundToNegativeInfinity};
// Everything fits, so everything should just be bit-shifts.
for (spvutils::round_direction round : rounding) {
@ -852,10 +851,10 @@ std::string get_round_text(spvutils::round_direction direction) {
return #round_direction
switch (direction) {
CASE(spvutils::round_direction::kToZero);
CASE(spvutils::round_direction::kToPositiveInfinity);
CASE(spvutils::round_direction::kToNegativeInfinity);
CASE(spvutils::round_direction::kToNearestEven);
CASE(spvutils::kRoundToZero);
CASE(spvutils::kRoundToPositiveInfinity);
CASE(spvutils::kRoundToNegativeInfinity);
CASE(spvutils::kRoundToNearestEven);
}
#undef CASE
return "";
@ -884,35 +883,35 @@ INSTANTIATE_TEST_CASE_P(F32ToF16, HexFloatFP32To16Tests,
::testing::ValuesIn(std::vector<DownCastTest>(
{
// Exactly representable as half.
{0.f, 0x0, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{-0.f, 0x8000, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{1.0f, 0x3C00, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{-1.0f, 0xBC00, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{0.f, 0x0, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{-0.f, 0x8000, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{1.0f, 0x3C00, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{-1.0f, 0xBC00, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{float_fractions({0, 1, 10}) , 0x3E01, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{-float_fractions({0, 1, 10}) , 0xBE01, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{static_cast<float>(ldexp(float_fractions({0, 1, 10}), 3)), 0x4A01, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{static_cast<float>(-ldexp(float_fractions({0, 1, 10}), 3)), 0xCA01, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{float_fractions({0, 1, 10}) , 0x3E01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{-float_fractions({0, 1, 10}) , 0xBE01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(ldexp(float_fractions({0, 1, 10}), 3)), 0x4A01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(-ldexp(float_fractions({0, 1, 10}), 3)), 0xCA01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
// Underflow
{static_cast<float>(ldexp(1.0f, -25)), 0x0, {RD::kToZero, RD::kToNegativeInfinity, RD::kToNearestEven}},
{static_cast<float>(ldexp(1.0f, -25)), 0x1, {RD::kToPositiveInfinity}},
{static_cast<float>(-ldexp(1.0f, -25)), 0x8000, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNearestEven}},
{static_cast<float>(-ldexp(1.0f, -25)), 0x8001, {RD::kToNegativeInfinity}},
{static_cast<float>(ldexp(1.0f, -24)), 0x1, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{static_cast<float>(ldexp(1.0f, -25)), 0x0, {spvutils::kRoundToZero, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(ldexp(1.0f, -25)), 0x1, {spvutils::kRoundToPositiveInfinity}},
{static_cast<float>(-ldexp(1.0f, -25)), 0x8000, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(-ldexp(1.0f, -25)), 0x8001, {spvutils::kRoundToNegativeInfinity}},
{static_cast<float>(ldexp(1.0f, -24)), 0x1, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
// Overflow
{static_cast<float>(ldexp(1.0f, 16)), positive_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{static_cast<float>(ldexp(1.0f, 18)), positive_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{static_cast<float>(ldexp(1.3f, 16)), positive_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{static_cast<float>(-ldexp(1.0f, 16)), negative_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{static_cast<float>(-ldexp(1.0f, 18)), negative_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{static_cast<float>(-ldexp(1.3f, 16)), negative_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{static_cast<float>(ldexp(1.0f, 16)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(ldexp(1.0f, 18)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(ldexp(1.3f, 16)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(-ldexp(1.0f, 16)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(-ldexp(1.0f, 18)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(-ldexp(1.3f, 16)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
// Transfer of Infinities
{std::numeric_limits<float>::infinity(), positive_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{-std::numeric_limits<float>::infinity(), negative_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}},
{std::numeric_limits<float>::infinity(), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{-std::numeric_limits<float>::infinity(), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
// Nans are below because we cannot test for equality.
})),);
@ -929,10 +928,10 @@ TEST_P(HexFloatFP16To32Tests, WideningCasts) {
HF16 f(GetParam().source_half);
spvutils::round_direction rounding[] = {
spvutils::round_direction::kToZero,
spvutils::round_direction::kToNearestEven,
spvutils::round_direction::kToPositiveInfinity,
spvutils::round_direction::kToNegativeInfinity};
spvutils::kRoundToZero,
spvutils::kRoundToNearestEven,
spvutils::kRoundToPositiveInfinity,
spvutils::kRoundToNegativeInfinity};
// Everything fits, so everything should just be bit-shifts.
for (spvutils::round_direction round : rounding) {
@ -972,10 +971,10 @@ TEST(HexFloatOperationTests, NanTests) {
using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>;
using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>;
spvutils::round_direction rounding[] = {
spvutils::round_direction::kToZero,
spvutils::round_direction::kToNearestEven,
spvutils::round_direction::kToPositiveInfinity,
spvutils::round_direction::kToNegativeInfinity};
spvutils::kRoundToZero,
spvutils::kRoundToNearestEven,
spvutils::kRoundToPositiveInfinity,
spvutils::kRoundToNegativeInfinity};
// Everything fits, so everything should just be bit-shifts.
for (spvutils::round_direction round : rounding) {

View File

@ -1330,7 +1330,7 @@ TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op
const auto getMember = [&](bool flatten, TIntermTyped* node,
const TVector<TVariable*>& memberVariables, int member,
TOperator op, const TType& memberType) {
TOperator op, const TType& memberType) -> TIntermTyped * {
TIntermTyped* subTree;
if (flatten)
subTree = intermediate.addSymbol(*memberVariables[member]);
@ -3037,7 +3037,7 @@ void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifi
// space
unsigned int setNumber;
const auto crackSpace = [&]() {
const auto crackSpace = [&]() -> bool {
const int spaceLen = 5;
if (spaceDesc->size() < spaceLen + 1)
return false;
@ -4233,7 +4233,7 @@ const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFu
symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
// can 'from' convert to 'to'?
const auto convertible = [this](const TType& from, const TType& to) {
const auto convertible = [this](const TType& from, const TType& to) -> bool {
if (from == to)
return true;
@ -4260,7 +4260,7 @@ const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFu
// Is 'to2' a better conversion than 'to1'?
// Ties should not be considered as better.
// Assumes 'convertible' already said true.
const auto better = [](const TType& from, const TType& to1, const TType& to2) {
const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
// exact match is always better than mismatch
if (from == to2)
return from != to1;
@ -4287,7 +4287,7 @@ const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFu
// - 32 vs. 64 bit (or width in general)
// - bool vs. non bool
// - signed vs. not signed
const auto linearize = [](const TBasicType& basicType) {
const auto linearize = [](const TBasicType& basicType) -> int {
switch (basicType) {
case EbtBool: return 1;
case EbtInt: return 10;