Merge pull request #548 from baldurk/vs2010-compile-fixes

VS2010 compile fixes
This commit is contained in:
John Kessenich
2016-10-15 23:09:31 -06:00
committed by GitHub
9 changed files with 170 additions and 164 deletions

View File

@@ -75,6 +75,7 @@ public:
#if !defined (use_cpp11) #if !defined (use_cpp11)
#include <cstdio> #include <cstdio>
#include <cstdint>
namespace spv { namespace spv {
class spirvbin_t : public spirvbin_base_t class spirvbin_t : public spirvbin_base_t

View File

@@ -797,7 +797,7 @@ Id Builder::makeFloat16Constant(float f16, bool specConstant)
spvutils::HexFloat<spvutils::FloatProxy<float>> fVal(f16); spvutils::HexFloat<spvutils::FloatProxy<float>> fVal(f16);
spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>> f16Val(0); spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>> f16Val(0);
fVal.castTo(f16Val, spvutils::round_direction::kToZero); fVal.castTo(f16Val, spvutils::kRoundToZero);
unsigned value = f16Val.value().getAsFloat().get_value(); unsigned value = f16Val.value().getAsFloat().get_value();

View File

@@ -23,6 +23,19 @@
#include <limits> #include <limits>
#include <sstream> #include <sstream>
#if defined(_MSC_VER) && _MSC_VER < 1700
namespace std {
bool isnan(double f)
{
return ::_isnan(f) != 0;
}
bool isinf(double f)
{
return ::_finite(f) == 0;
}
}
#endif
#include "bitutils.h" #include "bitutils.h"
namespace spvutils { namespace spvutils {
@@ -30,7 +43,7 @@ namespace spvutils {
class Float16 { class Float16 {
public: public:
Float16(uint16_t v) : val(v) {} Float16(uint16_t v) : val(v) {}
Float16() = default; Float16() {}
static bool isNan(const Float16& val) { static bool isNan(const Float16& val) {
return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0); return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
} }
@@ -56,12 +69,12 @@ class Float16 {
// a value is Nan. // a value is Nan.
template <typename T> template <typename T>
struct FloatProxyTraits { struct FloatProxyTraits {
using uint_type = void; typedef void uint_type;
}; };
template <> template <>
struct FloatProxyTraits<float> { struct FloatProxyTraits<float> {
using uint_type = uint32_t; typedef uint32_t uint_type;
static bool isNan(float f) { return std::isnan(f); } static bool isNan(float f) { return std::isnan(f); }
// Returns true if the given value is any kind of infinity. // Returns true if the given value is any kind of infinity.
static bool isInfinity(float f) { return std::isinf(f); } static bool isInfinity(float f) { return std::isinf(f); }
@@ -73,7 +86,7 @@ struct FloatProxyTraits<float> {
template <> template <>
struct FloatProxyTraits<double> { struct FloatProxyTraits<double> {
using uint_type = uint64_t; typedef uint64_t uint_type;
static bool isNan(double f) { return std::isnan(f); } static bool isNan(double f) { return std::isnan(f); }
// Returns true if the given value is any kind of infinity. // Returns true if the given value is any kind of infinity.
static bool isInfinity(double f) { return std::isinf(f); } static bool isInfinity(double f) { return std::isinf(f); }
@@ -85,7 +98,7 @@ struct FloatProxyTraits<double> {
template <> template <>
struct FloatProxyTraits<Float16> { struct FloatProxyTraits<Float16> {
using uint_type = uint16_t; typedef uint16_t uint_type;
static bool isNan(Float16 f) { return Float16::isNan(f); } static bool isNan(Float16 f) { return Float16::isNan(f); }
// Returns true if the given value is any kind of infinity. // Returns true if the given value is any kind of infinity.
static bool isInfinity(Float16 f) { return Float16::isInfinity(f); } static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
@@ -101,11 +114,11 @@ struct FloatProxyTraits<Float16> {
template <typename T> template <typename T>
class FloatProxy { class FloatProxy {
public: public:
using uint_type = typename FloatProxyTraits<T>::uint_type; typedef typename FloatProxyTraits<T>::uint_type uint_type;
// Since this is to act similar to the normal floats, // Since this is to act similar to the normal floats,
// do not initialize the data by default. // do not initialize the data by default.
FloatProxy() = default; FloatProxy() {}
// Intentionally non-explicit. This is a proxy type so // Intentionally non-explicit. This is a proxy type so
// implicit conversions allow us to use it more transparently. // implicit conversions allow us to use it more transparently.
@@ -164,13 +177,13 @@ std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
template <typename T> template <typename T>
struct HexFloatTraits { struct HexFloatTraits {
// Integer type that can store this hex-float. // Integer type that can store this hex-float.
using uint_type = void; typedef void uint_type;
// Signed integer type that can store this hex-float. // Signed integer type that can store this hex-float.
using int_type = void; typedef void int_type;
// The numerical type that this HexFloat represents. // The numerical type that this HexFloat represents.
using underlying_type = void; typedef void underlying_type;
// The type needed to construct the underlying type. // The type needed to construct the underlying type.
using native_type = void; typedef void native_type;
// The number of bits that are actually relevant in the uint_type. // The number of bits that are actually relevant in the uint_type.
// This allows us to deal with, for example, 24-bit values in a 32-bit // This allows us to deal with, for example, 24-bit values in a 32-bit
// integer. // integer.
@@ -188,10 +201,10 @@ struct HexFloatTraits {
// 1 sign bit, 8 exponent bits, 23 fractional bits. // 1 sign bit, 8 exponent bits, 23 fractional bits.
template <> template <>
struct HexFloatTraits<FloatProxy<float>> { struct HexFloatTraits<FloatProxy<float>> {
using uint_type = uint32_t; typedef uint32_t uint_type;
using int_type = int32_t; typedef int32_t int_type;
using underlying_type = FloatProxy<float>; typedef FloatProxy<float> underlying_type;
using native_type = float; typedef float native_type;
static const uint_type num_used_bits = 32; static const uint_type num_used_bits = 32;
static const uint_type num_exponent_bits = 8; static const uint_type num_exponent_bits = 8;
static const uint_type num_fraction_bits = 23; static const uint_type num_fraction_bits = 23;
@@ -202,10 +215,10 @@ struct HexFloatTraits<FloatProxy<float>> {
// 1 sign bit, 11 exponent bits, 52 fractional bits. // 1 sign bit, 11 exponent bits, 52 fractional bits.
template <> template <>
struct HexFloatTraits<FloatProxy<double>> { struct HexFloatTraits<FloatProxy<double>> {
using uint_type = uint64_t; typedef uint64_t uint_type;
using int_type = int64_t; typedef int64_t int_type;
using underlying_type = FloatProxy<double>; typedef FloatProxy<double> underlying_type;
using native_type = double; typedef double native_type;
static const uint_type num_used_bits = 64; static const uint_type num_used_bits = 64;
static const uint_type num_exponent_bits = 11; static const uint_type num_exponent_bits = 11;
static const uint_type num_fraction_bits = 52; static const uint_type num_fraction_bits = 52;
@@ -216,22 +229,21 @@ struct HexFloatTraits<FloatProxy<double>> {
// 1 sign bit, 5 exponent bits, 10 fractional bits. // 1 sign bit, 5 exponent bits, 10 fractional bits.
template <> template <>
struct HexFloatTraits<FloatProxy<Float16>> { struct HexFloatTraits<FloatProxy<Float16>> {
using uint_type = uint16_t; typedef uint16_t uint_type;
using int_type = int16_t; typedef int16_t int_type;
using underlying_type = uint16_t; typedef uint16_t underlying_type;
using native_type = uint16_t; typedef uint16_t native_type;
static const uint_type num_used_bits = 16; static const uint_type num_used_bits = 16;
static const uint_type num_exponent_bits = 5; static const uint_type num_exponent_bits = 5;
static const uint_type num_fraction_bits = 10; static const uint_type num_fraction_bits = 10;
static const uint_type exponent_bias = 15; static const uint_type exponent_bias = 15;
}; };
enum class round_direction { enum round_direction {
kToZero, kRoundToZero,
kToNearestEven, kRoundToNearestEven,
kToPositiveInfinity, kRoundToPositiveInfinity,
kToNegativeInfinity, kRoundToNegativeInfinity
max = kToNegativeInfinity
}; };
// Template class that houses a floating pointer number. // Template class that houses a floating pointer number.
@@ -240,10 +252,10 @@ enum class round_direction {
template <typename T, typename Traits = HexFloatTraits<T>> template <typename T, typename Traits = HexFloatTraits<T>>
class HexFloat { class HexFloat {
public: public:
using uint_type = typename Traits::uint_type; typedef typename Traits::uint_type uint_type;
using int_type = typename Traits::int_type; typedef typename Traits::int_type int_type;
using underlying_type = typename Traits::underlying_type; typedef typename Traits::underlying_type underlying_type;
using native_type = typename Traits::native_type; typedef typename Traits::native_type native_type;
explicit HexFloat(T f) : value_(f) {} explicit HexFloat(T f) : value_(f) {}
@@ -444,33 +456,23 @@ class HexFloat {
// constant_number < 0? 0: constant_number // constant_number < 0? 0: constant_number
// These convert the negative left-shifts into right shifts. // These convert the negative left-shifts into right shifts.
template <int_type N, typename enable = void> template <typename int_type>
struct negatable_left_shift { uint_type negatable_left_shift(int_type N, uint_type val)
static uint_type val(uint_type val) { {
return static_cast<uint_type>(val >> -N); if(N >= 0)
} return val << N;
};
template <int_type N> return val >> -N;
struct negatable_left_shift<N, typename std::enable_if<N >= 0>::type> { }
static uint_type val(uint_type val) {
return static_cast<uint_type>(val << N);
}
};
template <int_type N, typename enable = void> template <typename int_type>
struct negatable_right_shift { uint_type negatable_right_shift(int_type N, uint_type val)
static uint_type val(uint_type val) { {
return static_cast<uint_type>(val << -N); if(N >= 0)
} return val >> N;
};
template <int_type N> return val << -N;
struct negatable_right_shift<N, typename std::enable_if<N >= 0>::type> { }
static uint_type val(uint_type val) {
return static_cast<uint_type>(val >> N);
}
};
// Returns the significand, rounded to fit in a significand in // Returns the significand, rounded to fit in a significand in
// other_T. This is shifted so that the most significant // other_T. This is shifted so that the most significant
@@ -479,7 +481,7 @@ class HexFloat {
template <typename other_T> template <typename other_T>
typename other_T::uint_type getRoundedNormalizedSignificand( typename other_T::uint_type getRoundedNormalizedSignificand(
round_direction dir, bool* carry_bit) { round_direction dir, bool* carry_bit) {
using other_uint_type = typename other_T::uint_type; typedef typename other_T::uint_type other_uint_type;
static const int_type num_throwaway_bits = static const int_type num_throwaway_bits =
static_cast<int_type>(num_fraction_bits) - static_cast<int_type>(num_fraction_bits) -
static_cast<int_type>(other_T::num_fraction_bits); static_cast<int_type>(other_T::num_fraction_bits);
@@ -487,11 +489,11 @@ class HexFloat {
static const uint_type last_significant_bit = static const uint_type last_significant_bit =
(num_throwaway_bits < 0) (num_throwaway_bits < 0)
? 0 ? 0
: negatable_left_shift<num_throwaway_bits>::val(1u); : negatable_left_shift(num_throwaway_bits, 1u);
static const uint_type first_rounded_bit = static const uint_type first_rounded_bit =
(num_throwaway_bits < 1) (num_throwaway_bits < 1)
? 0 ? 0
: negatable_left_shift<num_throwaway_bits - 1>::val(1u); : negatable_left_shift(num_throwaway_bits - 1, 1u);
static const uint_type throwaway_mask_bits = static const uint_type throwaway_mask_bits =
num_throwaway_bits > 0 ? num_throwaway_bits : 0; num_throwaway_bits > 0 ? num_throwaway_bits : 0;
@@ -513,22 +515,22 @@ class HexFloat {
// do. // do.
if ((significand & throwaway_mask) == 0) { if ((significand & throwaway_mask) == 0) {
return static_cast<other_uint_type>( return static_cast<other_uint_type>(
negatable_right_shift<num_throwaway_bits>::val(significand)); negatable_right_shift(num_throwaway_bits, significand));
} }
bool round_away_from_zero = false; bool round_away_from_zero = false;
// We actually have to narrow the significand here, so we have to follow the // We actually have to narrow the significand here, so we have to follow the
// rounding rules. // rounding rules.
switch (dir) { switch (dir) {
case round_direction::kToZero: case kRoundToZero:
break; break;
case round_direction::kToPositiveInfinity: case kRoundToPositiveInfinity:
round_away_from_zero = !isNegative(); round_away_from_zero = !isNegative();
break; break;
case round_direction::kToNegativeInfinity: case kRoundToNegativeInfinity:
round_away_from_zero = isNegative(); round_away_from_zero = isNegative();
break; break;
case round_direction::kToNearestEven: case kRoundToNearestEven:
// Have to round down, round bit is 0 // Have to round down, round bit is 0
if ((first_rounded_bit & significand) == 0) { if ((first_rounded_bit & significand) == 0) {
break; break;
@@ -550,11 +552,11 @@ class HexFloat {
if (round_away_from_zero) { if (round_away_from_zero) {
return static_cast<other_uint_type>( return static_cast<other_uint_type>(
negatable_right_shift<num_throwaway_bits>::val(incrementSignificand( negatable_right_shift(num_throwaway_bits, incrementSignificand(
significand, last_significant_bit, carry_bit))); significand, last_significant_bit, carry_bit)));
} else { } else {
return static_cast<other_uint_type>( return static_cast<other_uint_type>(
negatable_right_shift<num_throwaway_bits>::val(significand)); negatable_right_shift(num_throwaway_bits, significand));
} }
} }
@@ -608,9 +610,9 @@ class HexFloat {
if (is_nan) { if (is_nan) {
typename other_T::uint_type shifted_significand; typename other_T::uint_type shifted_significand;
shifted_significand = static_cast<typename other_T::uint_type>( shifted_significand = static_cast<typename other_T::uint_type>(
negatable_left_shift< negatable_left_shift(
static_cast<int_type>(other_T::num_fraction_bits) - static_cast<int_type>(other_T::num_fraction_bits) -
static_cast<int_type>(num_fraction_bits)>::val(significand)); static_cast<int_type>(num_fraction_bits), significand));
// We are some sort of Nan. We try to keep the bit-pattern of the Nan // We are some sort of Nan. We try to keep the bit-pattern of the Nan
// as close as possible. If we had to shift off bits so we are 0, then we // as close as possible. If we had to shift off bits so we are 0, then we
@@ -623,9 +625,9 @@ class HexFloat {
} }
bool round_underflow_up = bool round_underflow_up =
isNegative() ? round_dir == round_direction::kToNegativeInfinity isNegative() ? round_dir == kRoundToNegativeInfinity
: round_dir == round_direction::kToPositiveInfinity; : round_dir == kRoundToPositiveInfinity;
using other_int_type = typename other_T::int_type; typedef typename other_T::int_type other_int_type;
// setFromSignUnbiasedExponentAndNormalizedSignificand will // setFromSignUnbiasedExponentAndNormalizedSignificand will
// zero out any underflowing value (but retain the sign). // zero out any underflowing value (but retain the sign).
other.setFromSignUnbiasedExponentAndNormalizedSignificand( other.setFromSignUnbiasedExponentAndNormalizedSignificand(
@@ -664,9 +666,9 @@ inline uint8_t get_nibble_from_character(int character) {
// Outputs the given HexFloat to the stream. // Outputs the given HexFloat to the stream.
template <typename T, typename Traits> template <typename T, typename Traits>
std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) { std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
using HF = HexFloat<T, Traits>; typedef HexFloat<T, Traits> HF;
using uint_type = typename HF::uint_type; typedef typename HF::uint_type uint_type;
using int_type = typename HF::int_type; typedef typename HF::int_type int_type;
static_assert(HF::num_used_bits != 0, static_assert(HF::num_used_bits != 0,
"num_used_bits must be non-zero for a valid float"); "num_used_bits must be non-zero for a valid float");
@@ -745,7 +747,7 @@ inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
if (next_char == '-' || next_char == '+') { if (next_char == '-' || next_char == '+') {
// Fail the parse. Emulate standard behaviour by setting the value to // Fail the parse. Emulate standard behaviour by setting the value to
// the zero value, and set the fail bit on the stream. // the zero value, and set the fail bit on the stream.
value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0}); value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
is.setstate(std::ios_base::failbit); is.setstate(std::ios_base::failbit);
return true; return true;
} }
@@ -777,7 +779,7 @@ inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
value.set_value(val); value.set_value(val);
// In the failure case, map -0.0 to 0.0. // In the failure case, map -0.0 to 0.0.
if (is.fail() && value.getUnsignedBits() == 0u) { if (is.fail() && value.getUnsignedBits() == 0u) {
value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0}); value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
} }
if (val.isInfinity()) { if (val.isInfinity()) {
// Fail the parse. Emulate standard behaviour by setting the value to // Fail the parse. Emulate standard behaviour by setting the value to
@@ -812,7 +814,7 @@ ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
// Then convert to 16-bit float, saturating at infinities, and // Then convert to 16-bit float, saturating at infinities, and
// rounding toward zero. // rounding toward zero.
float_val.castTo(value, round_direction::kToZero); float_val.castTo(value, kRoundToZero);
// Overflow on 16-bit behaves the same as for 32- and 64-bit: set the // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
// fail bit and set the lowest or highest value. // fail bit and set the lowest or highest value.

View File

@@ -673,11 +673,11 @@ void CompileAndLinkShaderFiles()
// they are all getting linked together.) // they are all getting linked together.)
glslang::TWorkItem* workItem; glslang::TWorkItem* workItem;
while (Worklist.remove(workItem)) { while (Worklist.remove(workItem)) {
ShaderCompUnit compUnit = { ShaderCompUnit compUnit(
FindLanguage(workItem->name), FindLanguage(workItem->name),
workItem->name, workItem->name,
ReadFileData(workItem->name.c_str()) ReadFileData(workItem->name.c_str())
}; );
if (! compUnit.text) { if (! compUnit.text) {
usage(); usage();

View File

@@ -68,6 +68,10 @@ inline long long int strtoll (const char* str, char** endptr, int base)
{ {
return _strtoi64(str, endptr, base); return _strtoi64(str, endptr, base);
} }
inline unsigned long long int strtoull (const char* str, char** endptr, int base)
{
return _strtoui64(str, endptr, base);
}
inline long long int atoll (const char* str) inline long long int atoll (const char* str)
{ {
return strtoll(str, NULL, 10); return strtoll(str, NULL, 10);

View File

@@ -361,7 +361,7 @@ const TFunction* TParseContextBase::selectFunction(
return viableCandidates.front(); return viableCandidates.front();
// 4. find best... // 4. find best...
auto betterParam = [&call, &better](const TFunction& can1, const TFunction& can2){ auto betterParam = [&call, &better](const TFunction& can1, const TFunction& can2) -> bool {
// is call -> can2 better than call -> can1 for any parameter // is call -> can2 better than call -> can1 for any parameter
bool hasBetterParam = false; bool hasBetterParam = false;
for (int param = 0; param < call.getParamCount(); ++param) { for (int param = 0; param < call.getParamCount(); ++param) {

View File

@@ -4873,7 +4873,7 @@ const TFunction* TParseContext::findFunction400(const TSourceLoc& loc, const TFu
symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
// can 'from' convert to 'to'? // can 'from' convert to 'to'?
const auto convertible = [this](const TType& from, const TType& to) { const auto convertible = [this](const TType& from, const TType& to) -> bool {
if (from == to) if (from == to)
return true; return true;
if (from.isArray() || to.isArray() || ! from.sameElementShape(to)) if (from.isArray() || to.isArray() || ! from.sameElementShape(to))
@@ -4884,7 +4884,7 @@ const TFunction* TParseContext::findFunction400(const TSourceLoc& loc, const TFu
// Is 'to2' a better conversion than 'to1'? // Is 'to2' a better conversion than 'to1'?
// Ties should not be considered as better. // Ties should not be considered as better.
// Assumes 'convertible' already said true. // Assumes 'convertible' already said true.
const auto better = [](const TType& from, const TType& to1, const TType& to2) { const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
// 1. exact match // 1. exact match
if (from == to2) if (from == to2)
return from != to1; return from != to1;

View File

@@ -690,10 +690,10 @@ TEST(HexFloatOperationTests, NonRounding) {
bool carry_bit = false; bool carry_bit = false;
spvutils::round_direction rounding[] = { spvutils::round_direction rounding[] = {
spvutils::round_direction::kToZero, spvutils::kRoundToZero,
spvutils::round_direction::kToNearestEven, spvutils::kRoundToNearestEven,
spvutils::round_direction::kToPositiveInfinity, spvutils::kRoundToPositiveInfinity,
spvutils::round_direction::kToNegativeInfinity}; spvutils::kRoundToNegativeInfinity};
// Everything fits, so this should be straight-forward // Everything fits, so this should be straight-forward
for (spvutils::round_direction round : rounding) { for (spvutils::round_direction round : rounding) {
@@ -725,7 +725,6 @@ TEST(HexFloatOperationTests, NonRounding) {
} }
} }
using RD = spvutils::round_direction;
struct RoundSignificandCase { struct RoundSignificandCase {
float source_float; float source_float;
std::pair<int16_t, bool> expected_results; std::pair<int16_t, bool> expected_results;
@@ -751,49 +750,49 @@ TEST_P(HexFloatRoundTest, RoundDownToFP16) {
INSTANTIATE_TEST_CASE_P(F32ToF16, HexFloatRoundTest, INSTANTIATE_TEST_CASE_P(F32ToF16, HexFloatRoundTest,
::testing::ValuesIn(std::vector<RoundSignificandCase>( ::testing::ValuesIn(std::vector<RoundSignificandCase>(
{ {
{float_fractions({0}), std::make_pair(half_bits_set({}), false), RD::kToZero}, {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToZero},
{float_fractions({0}), std::make_pair(half_bits_set({}), false), RD::kToNearestEven}, {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToNearestEven},
{float_fractions({0}), std::make_pair(half_bits_set({}), false), RD::kToPositiveInfinity}, {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToPositiveInfinity},
{float_fractions({0}), std::make_pair(half_bits_set({}), false), RD::kToNegativeInfinity}, {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1}), std::make_pair(half_bits_set({0}), false), RD::kToZero}, {float_fractions({0, 1}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), RD::kToZero}, {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0, 9}), false), RD::kToPositiveInfinity}, {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), RD::kToNegativeInfinity}, {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), RD::kToNearestEven}, {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNearestEven},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), RD::kToZero}, {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), RD::kToPositiveInfinity}, {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), spvutils::kRoundToPositiveInfinity},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), RD::kToNegativeInfinity}, {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), RD::kToNearestEven}, {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), spvutils::kRoundToNearestEven},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), RD::kToZero}, {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), RD::kToPositiveInfinity}, {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), RD::kToNegativeInfinity}, {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), RD::kToNearestEven}, {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), RD::kToZero}, {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), RD::kToPositiveInfinity}, {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToPositiveInfinity},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), RD::kToNegativeInfinity}, {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNegativeInfinity},
{-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), RD::kToNearestEven}, {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), RD::kToZero}, {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), RD::kToPositiveInfinity}, {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), RD::kToNegativeInfinity}, {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), RD::kToNearestEven}, {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
// Carries // Carries
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), RD::kToZero}, {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), spvutils::kRoundToZero},
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), RD::kToPositiveInfinity}, {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), spvutils::kRoundToPositiveInfinity},
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), RD::kToNegativeInfinity}, {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), spvutils::kRoundToNegativeInfinity},
{float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), RD::kToNearestEven}, {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), spvutils::kRoundToNearestEven},
// Cases where original number was denorm. Note: this should have no effect // Cases where original number was denorm. Note: this should have no effect
// the number is pre-normalized. // the number is pre-normalized.
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -128)), std::make_pair(half_bits_set({0}), false), RD::kToZero}, {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -128)), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -129)), std::make_pair(half_bits_set({0, 9}), false), RD::kToPositiveInfinity}, {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -129)), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -131)), std::make_pair(half_bits_set({0}), false), RD::kToNegativeInfinity}, {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -131)), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -130)), std::make_pair(half_bits_set({0, 9}), false), RD::kToNearestEven}, {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -130)), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
})),); })),);
// clang-format on // clang-format on
@@ -810,10 +809,10 @@ TEST_P(HexFloatRoundUpSignificandTest, Widening) {
bool carry_bit = false; bool carry_bit = false;
spvutils::round_direction rounding[] = { spvutils::round_direction rounding[] = {
spvutils::round_direction::kToZero, spvutils::kRoundToZero,
spvutils::round_direction::kToNearestEven, spvutils::kRoundToNearestEven,
spvutils::round_direction::kToPositiveInfinity, spvutils::kRoundToPositiveInfinity,
spvutils::round_direction::kToNegativeInfinity}; spvutils::kRoundToNegativeInfinity};
// Everything fits, so everything should just be bit-shifts. // Everything fits, so everything should just be bit-shifts.
for (spvutils::round_direction round : rounding) { for (spvutils::round_direction round : rounding) {
@@ -852,10 +851,10 @@ std::string get_round_text(spvutils::round_direction direction) {
return #round_direction return #round_direction
switch (direction) { switch (direction) {
CASE(spvutils::round_direction::kToZero); CASE(spvutils::kRoundToZero);
CASE(spvutils::round_direction::kToPositiveInfinity); CASE(spvutils::kRoundToPositiveInfinity);
CASE(spvutils::round_direction::kToNegativeInfinity); CASE(spvutils::kRoundToNegativeInfinity);
CASE(spvutils::round_direction::kToNearestEven); CASE(spvutils::kRoundToNearestEven);
} }
#undef CASE #undef CASE
return ""; return "";
@@ -884,35 +883,35 @@ INSTANTIATE_TEST_CASE_P(F32ToF16, HexFloatFP32To16Tests,
::testing::ValuesIn(std::vector<DownCastTest>( ::testing::ValuesIn(std::vector<DownCastTest>(
{ {
// Exactly representable as half. // Exactly representable as half.
{0.f, 0x0, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {0.f, 0x0, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{-0.f, 0x8000, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {-0.f, 0x8000, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{1.0f, 0x3C00, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {1.0f, 0x3C00, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{-1.0f, 0xBC00, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {-1.0f, 0xBC00, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{float_fractions({0, 1, 10}) , 0x3E01, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {float_fractions({0, 1, 10}) , 0x3E01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{-float_fractions({0, 1, 10}) , 0xBE01, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {-float_fractions({0, 1, 10}) , 0xBE01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(ldexp(float_fractions({0, 1, 10}), 3)), 0x4A01, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {static_cast<float>(ldexp(float_fractions({0, 1, 10}), 3)), 0x4A01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(-ldexp(float_fractions({0, 1, 10}), 3)), 0xCA01, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {static_cast<float>(-ldexp(float_fractions({0, 1, 10}), 3)), 0xCA01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
// Underflow // Underflow
{static_cast<float>(ldexp(1.0f, -25)), 0x0, {RD::kToZero, RD::kToNegativeInfinity, RD::kToNearestEven}}, {static_cast<float>(ldexp(1.0f, -25)), 0x0, {spvutils::kRoundToZero, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(ldexp(1.0f, -25)), 0x1, {RD::kToPositiveInfinity}}, {static_cast<float>(ldexp(1.0f, -25)), 0x1, {spvutils::kRoundToPositiveInfinity}},
{static_cast<float>(-ldexp(1.0f, -25)), 0x8000, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNearestEven}}, {static_cast<float>(-ldexp(1.0f, -25)), 0x8000, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(-ldexp(1.0f, -25)), 0x8001, {RD::kToNegativeInfinity}}, {static_cast<float>(-ldexp(1.0f, -25)), 0x8001, {spvutils::kRoundToNegativeInfinity}},
{static_cast<float>(ldexp(1.0f, -24)), 0x1, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {static_cast<float>(ldexp(1.0f, -24)), 0x1, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
// Overflow // Overflow
{static_cast<float>(ldexp(1.0f, 16)), positive_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {static_cast<float>(ldexp(1.0f, 16)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(ldexp(1.0f, 18)), positive_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {static_cast<float>(ldexp(1.0f, 18)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(ldexp(1.3f, 16)), positive_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {static_cast<float>(ldexp(1.3f, 16)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(-ldexp(1.0f, 16)), negative_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {static_cast<float>(-ldexp(1.0f, 16)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(-ldexp(1.0f, 18)), negative_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {static_cast<float>(-ldexp(1.0f, 18)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{static_cast<float>(-ldexp(1.3f, 16)), negative_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {static_cast<float>(-ldexp(1.3f, 16)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
// Transfer of Infinities // Transfer of Infinities
{std::numeric_limits<float>::infinity(), positive_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {std::numeric_limits<float>::infinity(), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
{-std::numeric_limits<float>::infinity(), negative_infinity, {RD::kToZero, RD::kToPositiveInfinity, RD::kToNegativeInfinity, RD::kToNearestEven}}, {-std::numeric_limits<float>::infinity(), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
// Nans are below because we cannot test for equality. // Nans are below because we cannot test for equality.
})),); })),);
@@ -929,10 +928,10 @@ TEST_P(HexFloatFP16To32Tests, WideningCasts) {
HF16 f(GetParam().source_half); HF16 f(GetParam().source_half);
spvutils::round_direction rounding[] = { spvutils::round_direction rounding[] = {
spvutils::round_direction::kToZero, spvutils::kRoundToZero,
spvutils::round_direction::kToNearestEven, spvutils::kRoundToNearestEven,
spvutils::round_direction::kToPositiveInfinity, spvutils::kRoundToPositiveInfinity,
spvutils::round_direction::kToNegativeInfinity}; spvutils::kRoundToNegativeInfinity};
// Everything fits, so everything should just be bit-shifts. // Everything fits, so everything should just be bit-shifts.
for (spvutils::round_direction round : rounding) { for (spvutils::round_direction round : rounding) {
@@ -972,10 +971,10 @@ TEST(HexFloatOperationTests, NanTests) {
using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>; using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>;
using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>; using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>;
spvutils::round_direction rounding[] = { spvutils::round_direction rounding[] = {
spvutils::round_direction::kToZero, spvutils::kRoundToZero,
spvutils::round_direction::kToNearestEven, spvutils::kRoundToNearestEven,
spvutils::round_direction::kToPositiveInfinity, spvutils::kRoundToPositiveInfinity,
spvutils::round_direction::kToNegativeInfinity}; spvutils::kRoundToNegativeInfinity};
// Everything fits, so everything should just be bit-shifts. // Everything fits, so everything should just be bit-shifts.
for (spvutils::round_direction round : rounding) { for (spvutils::round_direction round : rounding) {

View File

@@ -1330,7 +1330,7 @@ TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op
const auto getMember = [&](bool flatten, TIntermTyped* node, const auto getMember = [&](bool flatten, TIntermTyped* node,
const TVector<TVariable*>& memberVariables, int member, const TVector<TVariable*>& memberVariables, int member,
TOperator op, const TType& memberType) { TOperator op, const TType& memberType) -> TIntermTyped * {
TIntermTyped* subTree; TIntermTyped* subTree;
if (flatten) if (flatten)
subTree = intermediate.addSymbol(*memberVariables[member]); subTree = intermediate.addSymbol(*memberVariables[member]);
@@ -3037,7 +3037,7 @@ void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifi
// space // space
unsigned int setNumber; unsigned int setNumber;
const auto crackSpace = [&]() { const auto crackSpace = [&]() -> bool {
const int spaceLen = 5; const int spaceLen = 5;
if (spaceDesc->size() < spaceLen + 1) if (spaceDesc->size() < spaceLen + 1)
return false; return false;
@@ -4233,7 +4233,7 @@ const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFu
symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
// can 'from' convert to 'to'? // can 'from' convert to 'to'?
const auto convertible = [this](const TType& from, const TType& to) { const auto convertible = [this](const TType& from, const TType& to) -> bool {
if (from == to) if (from == to)
return true; return true;
@@ -4260,7 +4260,7 @@ const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFu
// Is 'to2' a better conversion than 'to1'? // Is 'to2' a better conversion than 'to1'?
// Ties should not be considered as better. // Ties should not be considered as better.
// Assumes 'convertible' already said true. // Assumes 'convertible' already said true.
const auto better = [](const TType& from, const TType& to1, const TType& to2) { const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
// exact match is always better than mismatch // exact match is always better than mismatch
if (from == to2) if (from == to2)
return from != to1; return from != to1;
@@ -4287,7 +4287,7 @@ const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFu
// - 32 vs. 64 bit (or width in general) // - 32 vs. 64 bit (or width in general)
// - bool vs. non bool // - bool vs. non bool
// - signed vs. not signed // - signed vs. not signed
const auto linearize = [](const TBasicType& basicType) { const auto linearize = [](const TBasicType& basicType) -> int {
switch (basicType) { switch (basicType) {
case EbtBool: return 1; case EbtBool: return 1;
case EbtInt: return 10; case EbtInt: return 10;