- make it sharable with GLSL
- correct the case insensitivity
- remove the map; queries are not needed, all entries need processing
- make it easier to build bottom up (will help GLSL parsing)
- support semantic checking and reporting
- allow front-end dependent semantics and attribute name mapping
This reverts commit cfc69d95afed34e1ba1371df0ddb56f2f491a5cb.
* Change CMAKE_INSTALL_PREFIX default on Windows in order
to prevent permission denied errors when trying to install
to "Program Files".
* Use `GNUInstallDirs` in order to respect GNU conventions.
This is especially important for multi-arch/multi-lib setups.
* Specify position independent mode building properly, without
using the historic hack of adding `-fPIC` as a definition.
This makes the build system more portable.
* Only detect C++ (and not C) to slightly speed up configuring.
* Specify C++11 mode using modern CMake idioms.
* Fix some whitespace issues.
Makes it easier to include glslang in a larger CMake project---instead
of having to call `target_link_libraries(glslang OSDependent OGLCompiler
HLSL)`, for example, you only need to call
`target_link_libraries(glslang)` and it will pull in the helpers it
needs.
This is also better in terms of cleaning up the "public interface",
of sorts, for building glslang: end-users probably shouldn't need to
know or be explicitly dependent on internal targets.
This PR adds the ability to offset sampler, texture, and UBO bindings
from provided base bindings, and to auto-number bindings that are not
provided with explicit register numbers. The mechanism works as
follows:
- Offsets may be given on the command line for all stages, or
individually for one or more single stages, in which case the
offset will be auto-selected according to the stage being
compiled. There is also an API to set them. The new command line
options are --shift-sampler-binding, --shift-texture-binding, and
--shift-UBO-binding.
- Uniforms which are not given explicit bindings in the source code
are auto-numbered if and only if they are in live code as
determined by the algorithm used to build the reflection
database, and the --auto-map-bindings option is given. This auto-numbering
avoids using any binding slots which were explicitly provided in
the code, whether or not that explicit use was live. E.g, "uniform
Texture1D foo : register(t3);" with --shift-texture-binding 10 will
reserve binding 13, whether or not foo is used in live code.
- Shorter synonyms for the command line options are available. See
the --help output.
The testing infrastructure is slightly extended to allow use of the
binding offset API, and two new tests spv.register.(no)autoassign.frag are
added for comparing the resulting SPIR-V.
This PR factors out the code that knows how to walk just the live parts of the AST.
The traverser in reflect.cpp is renamed to TReflectionTraverser, and inherits from
TLiveTraverser, which will also be used by a future binding offset PR.
The code is now smart about the entry point name (no longer hardcoded to "main").
There is an option to traverse all code (live+dead), because a consumer of the
class may wish to use it for both purposes without wanting a whole separate
class hierarchy.
Reimplement the whole workflow to make that: precise'ness of struct
members won't spread to other non-precise members of the same struct
instance.
Approach:
1. Build the map from symbols to their defining nodes. And for each
object node (StructIndex, DirectIndex, Symbol nodes, etc), generates an
accesschain path. Different AST nodes that indicating a same object
should have the same accesschain path.
2. Along the building phase in step 1, collect the initial set of
'precise' (AST qualifier: 'noContraction') objects' accesschain paths.
3. Start with the initial set of 'precise' accesschain paths, use it as
a worklist, do as the following steps until the worklist is empty:
1) Pop an accesschain path from worklist.
2) Get the symbol part from the accesschain path.
3) Find the defining nodes of that symbol.
4) For each defining node, check whether it is defining a 'precise'
object, or its assignee has nested 'precise' object. Get the
incremental path from assignee to its nested 'precise' object (if
any).
5) Traverse the right side of the defining node, obtain the
accesschain paths of the corresponding involved 'precise' objects.
Update the worklist with those new objects' accesschain paths.
Label involved operations with 'noContraction'.
In each step, whenever we find the parent object of an nested object is
'precise' (has 'noContraction' qualifier), we let the nested object
inherit the 'precise'ness from its parent object.
This adds solution folders that properly group gtest/glslang/hlsl.
This also marks gtest options as advanced so they don't show up
in cmake-gui by default.
Adds parseVersions.h as the base TParseVersions for versioning,
and splits the remainder between TParseContextBase (sharable across parsers)
and TParseContext (now the GLSL-specific part).
* Linux folder has been renamed to Unix, to match defines and so that it
compiles on OS X.
* This removes the need for a per-platform include search path for the
right OS folder
* This also moves bison generated files into the source tree, so that
include of glslang_tab.cpp.h and includes from glslang_tab.cpp work
the same way.