Some languages allow a restricted set of user structure types returned from texture sampling
operations. Restrictions include the total vector size of all components may not exceed 4,
and the basic types of all members must be identical.
This adds underpinnings for that ability. Because storing a whole TType or even a simple
TTypeList in the TSampler would be expensive, the structure definition is held in a
table outside the TType. The TSampler contains a small bitfield index, currently 4 bits
to support up to 15 separate texture template structure types, but that can be adjusted
up or down. Vector returns are handled as before.
There are abstraction methods accepting and returning a TType (such as may have been parsed
from a grammar). The new methods will accept a texture template type and set the
sampler to the structure if possible, checking a range of error conditions such as whether
the total structure vector components exceed 4, or whether their basic types differe, or
whether the struct contains non-vector-or-scalar members. Another query returns the
appropriate TType for the sampler.
High level summary of design:
In the TSampler, this holds an index into the texture structure return type table:
unsigned int structReturnIndex : structReturnIndexBits;
These are the methods to set or get the return type from the TSampler. They work for vector or structure returns, and potentially could be expanded to handle other things (small arrays?) if ever needed.
bool setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc);
void getTextureReturnType(const TSampler& sampler, const TType& retType, const TSourceLoc& loc) const;
The ``convertReturn`` lambda in ``HlslParseContext::decomposeSampleMethods`` is greatly expanded to know how to copy a vec4 sample return to whatever the structure type should be. This is a little awkward since it involves introducing a comma expression to return the proper aggregate value after a set of memberwise copies.
Name mangling did not account for the vector size in the template type of a texture.
This adds that. The mangle is as it ever was for the vec4 case, which leaves
all GLSL behavior and most HLSL behavior uneffected. For vec1-3 the size is added
to the mangle.
Current limitation: textures cannot presently be templatized on structured types,
so this works only for vectors of basic types.
Fixes#895.
This PR adds the ability to pass structuredbuffer types by reference
as function parameters.
It also changes the representation of structuredbuffers from anonymous
blocks with named members, to named blocks with pseudonymous members.
That should not be an externally visible change.
This PR adds support for default function parameters in the following cases:
1. Simple constants, such as void fn(int x, float myparam = 3)
2. Expressions that can be const folded, such a ... myparam = sin(some_const)
3. Initializer lists that can be const folded, such as ... float2 myparam = {1,2}
New tests are added: hlsl.params.default.frag and hlsl.params.default.err.frag
(for testing error situations, such as ambiguity or non-const-foldable).
In order to avoid sampler method ambiguity, the hlsl better() lambda now
considers sampler matches. Previously, all sampler types looked identical
since only the basic type of EbtSampler was considered.
- Add new keyword int64_t/uint64_t/i64vec/u64vec.
- Support 64-bit integer literals (dec/hex/oct).
- Support built-in operators for 64-bit integer type.
- Add implicit and explicit type conversion for 64-bit integer type.
- Add new built-in functions defined in this extension.
There will be subsequent commits to refine semantics, esp. version-specific semantics,
as well as I/O functionality and restrictions.
Note: I'm getting white-space differences in the preprocessor test results,
which I'm not checking in. I think they need to be tagged as binary or something.
- moving offset calculations for std140/std430 from reflection to linkValidate.cpp
- applying the offset/align rules on top of std140/std430
- removing caching the structure's number of components (and correcting that this is components, not size)
git-svn-id: https://cvs.khronos.org/svn/repos/ogl/trunk/ecosystem/public/sdk/tools/glslang@25174 e7fa87d3-cd2b-0410-9028-fcbf551c1848
This included
- encapsulating aggregate constants
- removal of constant-aggregate comparison algorithms, instead using a flattened and direct std::vector comparison
- adding structure type comparison for independently declared structures that still might match types
git-svn-id: https://cvs.khronos.org/svn/repos/ogl/trunk/ecosystem/public/sdk/tools/glslang@23274 e7fa87d3-cd2b-0410-9028-fcbf551c1848
- don't use [] for map lookups, it can modify the map
- copy up built-in symbols out of shared symbol table levels before modifying them
- enforce shallow vs. deep TType copies
- combine maxArraySize with the array dimensions vector, encapsulate
- remove chaining of array types
git-svn-id: https://cvs.khronos.org/svn/repos/ogl/trunk/ecosystem/public/sdk/tools/glslang@22953 e7fa87d3-cd2b-0410-9028-fcbf551c1848
Added the built-in functions EmitVertex(), EndPrimitive(), barrier(), memoryBarrier(), memoryBarrierAtomicCounter(), memoryBarrierBuffer(), memoryBarrierImage(), memoryBarrierShared(), and groupMemoryBarrier().
Have not added any new built-in variables.
Also changed the linear performance relateToOperator() to a high-performance version.
git-svn-id: https://cvs.khronos.org/svn/repos/ogl/trunk/ecosystem/public/sdk/tools/glslang@22659 e7fa87d3-cd2b-0410-9028-fcbf551c1848