Append() method is special: unlike most outputs, it does not copy
some temporary data to a symbol in the entry point epilogue, but
rather uses an emit builtin after each write to the output stream.
This had been handled by remembering the special output symbol for
the stream as it was declared in the shader entry point before
symbol sanitization. However the prior code was too simple and
only handled cases where the Append() method happened after the
entry point, so that the output symbol had been seen.
This PR adds a patching step so that the Append()s may appear in
any order WRT the entry point. They are patched in an epilogue,
whereupon it is guaranteed in a well formed shader that we have
seen the appropriate declaration.
Fixes#1217.
- Use much simpler method to update implicit array sizes.
The previous overly complicated method was error prone.
- Rationalize all use of unsized arrays.
- Combine decorations when generating SPIR-V, to simplify
adding extensions.
There a couple functional problems, which when reduced down also led to
some good simplifications and rationalization. So, this commit:
- corrects "mixed" functionality: int[A] f[B] -> f[B][A]
- correct multi-identifier decls: int[A] f[B], g[C] -> f and g are independently sized.
- increases symmetry between different places in the code that do this
- makes fewer ways to do the same thing; several methods are just gone now
- makes more clear when something is copied or shared
Reinforces that conversion rules are operation-specific.
Side effect is that HLSL logical-operator conversions are more direct
(e.g. float -> bool, rather than float -> int -> bool).
HLSL allows image and texture types to be templatized on sub-vec4 types,
or even structures. This was mostly handled already during creation of
sampling operations. However, for operator[] which can generate image
loads, this wasn't happening.
It also isn't very easy to do at that point in time, because operator[]
does not know where the results it produces will end up. They may be
an lvalue or an rvalue, and there's a post-process to convert loads to
stores. They may end up in atomic ops.
To bypass that difficulty, GlslangToSpv now looks for this case and
adds the appropriate conversion. LIMITATION: this only works for
cases for which a simple conversion opcode suffices. That is to say,
it will not work if the type is templatized on a struct.