Fix for two defects as follows:
- The IO mapping traverser was not setting inVisit, and would skip some AST nodes.
Depending on the order of nodes, this could have prevented the binding from
showing up in the generated SPIR-V.
- If a uniform array was flattened, each of the flattened scalars from the array
is still a (now-scalar) uniform. It was being converted to a temporary.
This checkin adds a --flatten-uniform-arrays option which can break
uniform arrays of samplers, textures, or UBOs up into individual
scalars named (e.g) myarray[0], myarray[1], etc. These appear as
individual linkage objects.
Code notes:
- shouldFlatten internally calls shouldFlattenIO, and shouldFlattenUniform,
but is the only flattening query directly called.
- flattenVariable will handle structs or arrays (but not yet arrayed structs;
this is tested an an error is generated).
- There's some error checking around unhandled situations. E.g, flattening
uniform arrays with initializer lists is not implemented.
- This piggybacks on as much of the existing mechanism for struct flattening
as it can. E.g, it uses the same flattenMap, and the same
flattenAccess() method.
- handleAssign() has been generalized to cope with either structs or arrays.
- Extended test infrastructure to test flattening ability.
This PR adds the ability to offset sampler, texture, and UBO bindings
from provided base bindings, and to auto-number bindings that are not
provided with explicit register numbers. The mechanism works as
follows:
- Offsets may be given on the command line for all stages, or
individually for one or more single stages, in which case the
offset will be auto-selected according to the stage being
compiled. There is also an API to set them. The new command line
options are --shift-sampler-binding, --shift-texture-binding, and
--shift-UBO-binding.
- Uniforms which are not given explicit bindings in the source code
are auto-numbered if and only if they are in live code as
determined by the algorithm used to build the reflection
database, and the --auto-map-bindings option is given. This auto-numbering
avoids using any binding slots which were explicitly provided in
the code, whether or not that explicit use was live. E.g, "uniform
Texture1D foo : register(t3);" with --shift-texture-binding 10 will
reserve binding 13, whether or not foo is used in live code.
- Shorter synonyms for the command line options are available. See
the --help output.
The testing infrastructure is slightly extended to allow use of the
binding offset API, and two new tests spv.register.(no)autoassign.frag are
added for comparing the resulting SPIR-V.
This PR factors out the code that knows how to walk just the live parts of the AST.
The traverser in reflect.cpp is renamed to TReflectionTraverser, and inherits from
TLiveTraverser, which will also be used by a future binding offset PR.
The code is now smart about the entry point name (no longer hardcoded to "main").
There is an option to traverse all code (live+dead), because a consumer of the
class may wish to use it for both purposes without wanting a whole separate
class hierarchy.
Code using atEndOfFile was dead, instead do something useful with
the scanners atEndOfInput(). This allows a better error message
for early termination of cascading errors.
This also enables vecN -> vec1 shape conversions for all places doing shape
conversions.
For signature selection, makes shape changes worse than any other comparison
when deciding what conversions are better than others.
This is part of the change to have desktop shaders respect precision
qualifiers on Vulkan, but since the defaults are all highp, and that's
different from ES fragment shaders, detect likely cases and warn about
them (but being careful to not be too noisy if it's unlikely to be a
problem).
Sets highp defaults for the appropriate types, for all stages,
and turns on precision qualifiers for non-ES shaders. Required
fixing some qualifier orders for desktop built-in declarations
for pre-420 shaders.
Use the new function selector for #version 400 and above,
parameterized for the GLSL #version 400 selection rules.
This can be used for both GLSL and HLSL, and other languages
as well.
When preprocessing only, some tokens were emitted as <bad token>.
This fixes them to preserve their original content.
This supplants PR #182, with a correction and test results.
From the ES spec + Bugzilla 15931 and GL_KHR_vulkan_glsl:
- Update precision qualifiers for all built-in function prototypes.
- Implement the new algorithm used to distinguish built-in function
operation precisions from result precisions.
Also add tracking of separate result and operation precisions, and
use that in generating SPIR-V.
(SPIR-V cares about precision of operation, while the front-end
cares about precision of result, for propagation.)
The sequence
#define m()
int m"
creates a token of no length (a string of 0 size). Protect
against a string of 0 size as well as the existing protect
against a null string.
This would look ahead for a second #, for token pasting, and if not
found, backup one token. This is fine, unless at the end of line,
which would backup the #, rather than the look ahead.
Also, this allows turning on the error check for a failed assigment
when parsing.
This makes 39 HLSL tests have a working assignment that was previously
silently dropped, due to lack of this functionality.