This PR emulates per control point inputs to patch constant functions.
Without either an extension to look across SIMD lanes or a dedicated
stage, the emulation must use separate invocations of the wrapped
entry point to obtain the per control point values. This is provided
since shaders are wanting this functionality now, but such an extension
is not yet available.
Entry point arguments qualified as an invocation ID are replaced by the
current control point number when calling the wrapped entry point. There
is no particular optimization for the case of the entry point not having
such an input but the PCF still accepting ctrl pt frequency data. It'll
work, but anyway makes no so much sense.
The wrapped entry point must return the per control point data by value.
At this time it is not supported as an output parameter.
It would have been possible for globally scoped user functions to collide
with builtin method names. This adds a prefix to avoid polluting the
namespace.
Ideally this would be an invalid character to use in user identifiers, but
as that requires changing the scanner, for the moment it's an unlikely yet
valid prefix.
Also use this to move deferred member-function-body parsing to a better
place.
This should also be well poised for implementing the 'namespace' keyword.
This is needed for accessing types/variables within a member function body that are
not known until after the struct is finished being declared. However, that funtionality
is not yet present, this is just the deferred processing, which is working for
static member functions.
This is slightly cleaner today for entry-point wrapping, which sometimes made
two subtrees for a function definition instead of just one subtree. It will be
critical though for recognizing a struct with multiple member functions.
The non-LOD form of image size query is prohibited in certain cases:
see the OpImageQuerySize and OpImageQuerySizeLod sections of the SPIR-V
spec for details. Sometimes we were generating the non-LOD form when
we should have been using the LOD form. Sometimes the LOD form is required
even if the underlying HLSL query did not supply a MIP level itself,
in which case level 0 is now queried.
This change propagates the storage qualifier from the buffer object to its contained
array type so that isStructBufferType() realizes it is one. That propagation was
happening before only for global variable declarations, so compilation defects would
result if the use of a function parameter happened before a global declaration.
This fixes that case, whether or not there ever is a global declaration, and
regardless of the relative order.
This changes the hlsl.structbuffer.fn.frag test to exercise the alternate order.
There are no differences to generated SPIR-V for the cases which successfully compiled before.
Use an explicit cast from size_t to int to avoid errors like the following:
glslang\glslang\MachineIndependent\preprocessor\Pp.cpp(1053) : error C2220: warning treated as error - no 'object' file generated
glslang\glslang\MachineIndependent\preprocessor\Pp.cpp(1053) : warning C4267: '=' : conversion from 'size_t' to 'int', possible loss of data
affects Pp.cpp, hlslParseHelper.cpp.
Initialize local variable to get rid of warningsa about potentially
uninitialized variables:
glslang\hlsl\hlslparsehelper.cpp(3667) : error C2220: warning treated as error - no 'object' file generated
glslang\hlsl\hlslparsehelper.cpp(3667) : warning C4701: potentially uninitialized local variable 'builtIn' used
affects hlslParseHelper.cpp
The f16tof32 opcode was indexing a vector with a float 0, rather
than an int 0. It may have made no functional difference due to the
identical bit pattern, but code looking at the type could be
confused.
This PR adds the ability to pass structuredbuffer types by reference
as function parameters.
It also changes the representation of structuredbuffers from anonymous
blocks with named members, to named blocks with pseudonymous members.
That should not be an externally visible change.