HLSL has keywords for various interpolation modifiers such as "linear",
"centroid", "sample", etc. Of these, "sample" appears to be special,
as it is also accepted as an identifier string, where the others are not.
This PR adds this ability, so the construct "int sample = 42;" no longer
produces a compilation error.
New test = hlsl.identifier.sample.frag
These HLSL types are guaranteed to have at least the given number of bits, but may have more.
min{16,10}float is mapped to EbtFloat at medium precision -> SPIRV RelaxedPrecision
min{16,12}int and min16uint are mapped to mediump -> SPIR-V RelaxedPrecision
This PR adds handling of the numthreads attribute for compute shaders, as well as a general
infrastructure for returning attribute values from acceptAttributes, which may be needed in other
cases, e.g, unroll(x), or merely to know if some attribute without params was given.
A map of enum values from TAttributeType to TIntermAggregate nodes is built and returned. It
can be queried with operator[] on the map. In the future there may be a need to also handle
strings (e.g, for patchconstantfunc), and those can be easily added into the class if needed.
New test is in hlsl.numthreads.comp.
This fixes defects as follows:
1. handleLvalue could be called on a non-L-value, and it shouldn't be.
2. HLSL allows unary negation on non-bool values. TUnaryOperator::promote
can now promote other types (e.g, int, float) to bool for this op.
3. HLSL allows binary logical operations (&&, ||) on arbitrary types, similar
(2).
4. HLSL allows mod operation on arbitrary types, which will be promoted.
E.g, int % float -> float % float.
This PR sets the TQualifier layoutFormat according to the HLSL image type.
For instance:
RWTexture1D <float2> g_tTex1df2;
becomes ElfRg32f. Similar on Buffers, e.g, Buffer<float4> mybuffer;
The return type for image and buffer loads is now taken from the storage format.
Also, the qualifier for the return type is now (properly) a temp, not a global.
All the underpinnings are there; this just parses multiple array dimensions
and passes them through to the existing mechanisms.
Also, minor comment fixes, and add a new test for multi-dim arrays.
This commit adds l-value support for RW texture and buffer objects.
Supported are:
- pre and post inc/decrement
- function out parameters
- op-assignments, such as *=, +-, etc.
- result values from op-assignments. e.g, val=(MyRwTex[loc] *= 2);
Not supported are:
- Function inout parameters
- multiple post-inc/decrement operators. E.g, MyRWTex[loc]++++;
There's a lot to do for RWTexture and RWBuffer, so it will be broken up into
several PRs. This is #1.
This adds RWTexture and RWBuffer support, with the following limitations:
* Only 4 component formats supported
* No operator[] yet
Those will be added in other PRs.
This PR supports declarations and the Load & GetDimensions methods. New tests are
added.
In HLSL array sizes need not be provided explicitly in all circumstances.
For example, this is valid (note no number between the [ ]):
// no explicit array size
uniform float g_array[] = { 1, 2, 3, 4, 5 };
This PR does not attempt to validate most invalid cases.
A new test is added to verify the resulting linker objects.
Also, this allows turning on the error check for a failed assigment
when parsing.
This makes 39 HLSL tests have a working assignment that was previously
silently dropped, due to lack of this functionality.