- fixed ParseHelper.cpp newlines (crlf -> lf)
- removed trailing white space in most source files
- fix some spelling issues
- extra blank lines
- tabs to spaces
- replace #include comment about no location
PR #577 addresses most but not all of the intrinsic promotion problems.
This PR resolves all known cases in the remainder.
Interlocked ops need special promotion rules because at the time
of function selection, the first argument has not been converted
to a buffer object. It's just an int or uint, but you don't want
to convert THAT argument, because that implies converting the
buffer object itself. Rather, you can convert other arguments,
but want to stay in the same "family" of functions. E.g, if
the first interlocked arg is a uint, use only the uint family,
never the int family, you can convert the other args as you please.
This PR allows making such opcode and arg specific choices by
passing the op and arg to the convertible lambda. The code in
the new test "hlsl.promote.atomic.frag" would not compile without
this change, but it must compile.
Also, it provides better handling of downconversions (to "worse"
types), which are permitted in HLSL. The existing method of
selecting upconversions is unchanged, but if that doesn't find
any valid ones, then it will allow downconversions. In effect
this always uses an upconversion if there is one.
Rationalizes the entire tracking of the linker object nodes, effecting
GLSL, HLSL, and SPIR-V, to allow tracked objects to be fully edited before
their type snapshot for linker objects.
Should only effect things when the rest of the AST contained no reference to
the symbol, because normal AST nodes were not stale. Also will only effect such
objects when their types were edited.
I happened upon numArgs while hunting for unused variables. I suspect
the intent was to apply it as shown in this patch. However, I am not a
compiler dude. Someone more appropriate should grok this change.
- hlsl.struct.frag variable changed to static, assignment replacd.
- Created new low level functions addBinaryNode and addUnaryNode. These are
used by higher level functions such as addAssignment, and do not do any
argument promotion or conversion of any sort.
- Two functions above are now used in RWTexture lvalue conversions. Also,
other direction creations of unary or binary nodes now use them, e.g, addIndex.
This cleans up some existing code.
- removed handling of EOpVectorTimesScalar from promote()
- removed comment from ParseHelper.cpp
This commit splits lValueErrorCheck into machine dependent and independent
parts. The GLSL form in TParseContext inherits from and invokes the
machine dependent part in TParseContextBase. The base form checks language
independent things. This split does not change the set of errors tested
for: the test results are identical.
The new base class interface is now used from the HLSL FE to test lvalues.
There was one test diff due to this, where the test was writing to a uniform.
It still does the same indirections, but does not attempt a uniform write.
Code using atEndOfFile was dead, instead do something useful with
the scanners atEndOfInput(). This allows a better error message
for early termination of cascading errors.
This is part of the change to have desktop shaders respect precision
qualifiers on Vulkan, but since the defaults are all highp, and that's
different from ES fragment shaders, detect likely cases and warn about
them (but being careful to not be too noisy if it's unlikely to be a
problem).
Sets highp defaults for the appropriate types, for all stages,
and turns on precision qualifiers for non-ES shaders. Required
fixing some qualifier orders for desktop built-in declarations
for pre-420 shaders.
Use the new function selector for #version 400 and above,
parameterized for the GLSL #version 400 selection rules.
This can be used for both GLSL and HLSL, and other languages
as well.
From the ES spec + Bugzilla 15931 and GL_KHR_vulkan_glsl:
- Update precision qualifiers for all built-in function prototypes.
- Implement the new algorithm used to distinguish built-in function
operation precisions from result precisions.
Also add tracking of separate result and operation precisions, and
use that in generating SPIR-V.
(SPIR-V cares about precision of operation, while the front-end
cares about precision of result, for propagation.)
- Support GL_AMD_shader_ballot (SPV_AMD_shader_ballot).
- Support GL_AMD_shader_trinary_minmax (SPV_AMD_shader_trinary_minmax).
- Support GL_AMD_shader_explicit_vertex_parameter
(SPV_AMD_shader_explicit_vertex_parameter).
- Support GL_AMD_gcn_shader (SPV_AMD_gcn_shader).
Added -C option to request cascading errors. By default, will exit early,
to avoid all error-recovery-based crashes.
This works by simulating end-of-file in input on first error, so no
need for exception handling, or stack unwinding, or any complex error
checking/handling to get out of the stack.