Previously, an error was thrown when assigning a float1 to a scalar float,
or similar for other basic types. This allows that.
Also, this allows calling functions accepting scalars with float1 params,
so for example sin(float1) will work. This is a minor change in
HlslParseContext::findFunction().
A need arose to use capabilities from TIntermediate during
node promotion. These methods have been moved from virtual
methods on the TIntermUnary and TIntermBinary nodes to methods
on TIntermediate, so it is easy for them construct new nodes
and so on.
This is done as a separate commit to verify that no test results
are changed as a result.
This fixes defects as follows:
1. handleLvalue could be called on a non-L-value, and it shouldn't be.
2. HLSL allows unary negation on non-bool values. TUnaryOperator::promote
can now promote other types (e.g, int, float) to bool for this op.
3. HLSL allows binary logical operations (&&, ||) on arbitrary types, similar
(2).
4. HLSL allows mod operation on arbitrary types, which will be promoted.
E.g, int % float -> float % float.
This PR sets the TQualifier layoutFormat according to the HLSL image type.
For instance:
RWTexture1D <float2> g_tTex1df2;
becomes ElfRg32f. Similar on Buffers, e.g, Buffer<float4> mybuffer;
The return type for image and buffer loads is now taken from the storage format.
Also, the qualifier for the return type is now (properly) a temp, not a global.
- Add new queries: TProgram::getUniformTType and getUniformBlockTType,
which return a const TType*, or nullptr on a bad index. These are valid for
any source language.
- Interface name for HLSL cbuffers is taken from the (only) available declaration name,
whereas before it was always an empty string, which caused some troubles with reflection
mapping them all to the same index slot. This also makes it appear in the SPIR-V binary
instead of an empty string.
- Print the binding as part of the reflection textual dump.
- TType::clone becomes const. Needed to call it from a const method, and anyway it doesn't
change the object it's called on.
- Because the TObjectReflection constructor is called with a TType *reference* (not pointer)
so that it's guaranteed to pass in a type, and the "badReflection" value should use a nullptr
there, that now has a dedicated static method to obtain the bad value. It uses a private
constructor, so external users can't create one with a nullptr type.